a>0
a<nは実数
c>0
f(x)=√(x^2+c^2)
m>0
E(x)=x^2/(2m)+f(x)
L(x,y,z)=(x^2+y^2+2xyz)/(2m)+f(x)+f(y)
h(x,y,z)=zx^3y^3/{f(x)f(y)}(1/E(x)+1/E(y))1/{L(x,y,z)}^4
S_n=∫_{-1→1}∫_{a→n}∫_{a→n}h(x,y,z)dxdydz
g(x,y,z)=h(x,y,z)+h(x,y,-z)
g1(x,y,z)=-(2/m)z^2x^4y^4/{f(x)f(y)}(1/E(x)+1/E(y))/[L(x,y,z){L(x,y,-z)}^4]
g2(x,y,z)=
-(2/m)z^2x^4y^4/{f(x)f(y)}(1/E(x)+1/E(y))*
(1/[{L(x,y,z)}^2{L(x,y,-z)}^3]+1/[{L(x,y,z)}^3{L(x,y,-z)}^2]+1/[L(x,y,-z){L(x,y,z)}^4])
S1(n)=∫_{a→n}∫_{y→n}∫_{0→1-1/(xy^2)^{1/4}}g1(x,y,z)dzdxdy
S2(n)=∫_{a→n}∫_{y→n}∫_{1-1/(xy^2)^{1/4}→1}g1(x,y,z)dzdxdy
S3(n)=∫_{0→1}∫_{a→n}∫_{y→n}g2(x,y,z)dxdydz
とすると
S_n
=∫_{-1→0}∫_{a→n}∫_{a→n}h(x,y,z)dxdydz+∫_{0→1}∫_{a→n}∫_{a→n}h(x,y,z)dxdydz
=∫_{0→1}∫_{a→n}∫_{a→n}{h(x,y,z)+h(x,y,-z)}dxdydz
=∫_{0→1}∫_{a→n}∫_{a→n}g(x,y,z)dxdydz
h(x,y,-z)=-zx^3y^3/{f(x)f(y)}(1/E(x)+1/E(y))1/{L(x,y,-z)}^4
0≦z≦1
a≦x≦n
a≦y≦n
の時
g1(x,y,z)<0
g2(x,y,z)<0
g(x,y,z)
=h(x,y,z)+h(x,y,-z)
=zx^3y^3/{f(x)f(y)}(1/E(x)+1/E(y))[1/{L(x,y,z)}^4-1/{L(x,y,-z)}^4]
=-(2/m)z^2x^4y^4/{f(x)f(y)}(1/E(x)+1/E(y)){1/L(x,y,z)+1/L(x,y,-z)}[1/{L(x,y,z)}^2+1/{L(x,y,-z)}^2]
/{L(x,y,z)L(x,y,-z)}
=g1(x,y,z)+g2(x,y,z)
<0
S1(n)<0
S2(n)<0
S3(n)<0
S_n
=∫_{0→1}∫_{a→n}∫_{y→n}g(x,y,z)dxdydz+∫_{0→1}∫_{a→n}∫_{x→n}g(x,y,z)dydxdz
=2∫_{0→1}∫_{a→n}∫_{y→n}g(x,y,z)dxdydz
=
2∫_{a→n}∫_{y→n}∫_{0→1}g1(x,y,z)dzdxdy
+2∫_{0→1}∫_{a→n}∫_{y→n}g2(x,y,z)dxdydz
=
2∫_{a→n}∫_{y→n}∫_{0→1-1/(xy^2)^{1/4}}g1(x,y,z)dzdxdy
+2∫_{a→n}∫_{y→n}∫_{1-1/(xy^2)^{1/4}→1}g1(x,y,z)dzdxdy
+2∫_{0→1}∫_{a→n}∫_{y→n}g2(x,y,z)dxdydz
=
2S1(n)+2S2(n)+2S3(n)
<0
S_n=S(n)は単調減少
x<f(x)
y<f(y)
1/f(x)<1/x
1/f(y)<1/y
1/E(x)<2m/x^2
1/E(y)<2m/y^2
1/L(x,y,z)<2m/x^2
1/E(x)+1/E(y)<2m(1/x^2+1/y^2)
y≦xの時
1/E(x)+1/E(y)<4m/y^2
1/L(x,y,-z)<1/x
1/{L(x,y,-z)}^4<1/x^4
z<1-1/(xy^2)^{1/4}の時
1/(xy^2)^{1/4}<1-z
1/(xy^2)<(1-z)^4
1/(1-z)^4<xy^2
1/L(x,y,-z)<m/{xy(1-z)}
1/{L(x,y,-z)}^4<m^4/{xy(1-z)}^4<m^4/(x^3y^2)
-g1(x,y,z)
=(2/m)z^2x^4y^4/{f(x)f(y)}(1/E(x)+1/E(y))/[L(x,y,z){L(x,y,-z)}^4]
<(16m)xy/{L(x,y,-z)}^4
<(16m^5)/(x^2y)
0
>S1(n)
=∫_{a→n}∫_{y→n}∫_{0→1-1/(xy^2)^{1/4}}g1(x,y,z)dzdxdy
>-16m^5∫_{a→n}(1/y)∫_{y→n}(1/x^2)dxdy
=-16m^5∫_{a→n}(1/y)[-1/x]_{y→n}dy
=-16m^5)∫_{a→n}(1/y)[1/y-1/n]dy
<-16m^5∫_{a→n}(1/y^2)dy
=-16m^5[-1/y]_{a→n}
>-16m^5/a
S1(n)は下に有界で単調減少だから収束する
1-1/(xy^2)^{1/4}<z<1の時
-g1(x,y,z)
=(2/m)z^2x^4y^4/{f(x)f(y)}(1/E(x)+1/E(y))/[L(x,y,z){L(x,y,-z)}^4]
<(16m)xy/{L(x,y,-z)}^4
<(16m)y/x^3
0
>S2(n)
=∫_{a→n}∫_{y→n}∫_{1-1/(xy^2)^{1/4}→1}g1(x,y,z)dzdxdy
>-(16m)∫_{a→n}y^{1/2}∫_{y→n}x^{-13/4}dxdy
=-(64m/9)∫_{a→n}y^{1/2}[-x^{-9/4}]_{y→n}dy
=-(64m/9)∫_{a→n}y^{1/2}[y^{-9/4}-n^{-9/4}]dy
>-(64m/9)∫_{a→n}y^{-7/4}dy
=-(256m/27)[-y^{-3/4}]_{a→n}
=-(256m/27)[a^{-3/4}-n^{-3/4}]
>-256m/(27a^{3/4})
S2(n)は下に有界で単調減少だから収束する
-g2(x,y,z)
=
(2/m)z^2x^4y^4/{f(x)f(y)}(1/E(x)+1/E(y))
(1/[{L(x,y,z)}^2{L(x,y,-z)}^3]+1/[{L(x,y,z)}^3{L(x,y,-z)}^2]+1/[L(x,y,-z){L(x,y,z)}^4])
<8x^3y(4m^2/x^7+8m^3/x^8+16m^4/x^9)
=(32m^2)y(1/x^4+2m/x^5+4m^2/x^6)
0
>S3(n)
=∫_{0→1}∫_{a→n}∫_{y→n}g2(x,y,z)dxdydz
>-(32m^2)∫_{a→n}y∫_{y→n}(1/x^4+2m/x^5+4m^2/x^6)dxdy
=-(32m^2)∫_{a→n}y[-1/(3x^3)-m/(2x^4)-4m^2/(5x^5)]_{y→n}dy
>-(32m^2)∫_{a→n}[1/(3y^2)+m/(2y^3)+4m^2/(5y^4)]dy
=-(32m^2)[-1/(3y)-m/(4y^2)-4m^2/(15y^3)]_{a→n}
>-(32m^2)[1/(3a)+m/(4a^2)+4m^2/(15a^3)]
S3(n)は下に有界で単調減少だから収束する
∴
S_n=2S1(n)+2S2(n)+2S3(n)
は収束する
お礼
お見事な回答、ありがとうございました。