a>0
nは実数
c>0
f(x)=√(x^2+c^2)
m>0
E(x)=x^2/(2m)+f(x)
L(x,y,z)=(x^2+y^2+2xyz)/(2m)+f(x)+f(y)
h(x,y,z)=[x^2y^2/{f(x)f(y)}](x^2/{E(x)}^4+y^2/{E(y)}^4)[1/L(x,y,z)]
S_n=∫_{-1→1}∫_{a→n}∫_{a→n}h(x,y,z)dxdydz
S1_n=∫_{-1→1}∫_{a→a+1}∫_{y→n}h(x,y,z)dxdydz
S3_n=
+∫_{-1→1}∫_{a+1→n}∫_{y→n}h(x,y,z)dxdydz
+∫_{-1→1}∫_{a→n}∫_{a→y}h(x,y,z)dxdydz
とすると
f(x)>0
E(x)>0
L(x,y,z)={(x-y)^2+2xy(1+z)}/(2m)+f(x)+f(y)>0
h(x,y,z)>0
S1_n>0
S3_n>0
S_n=S1_n+S3_n>0
a≦x
1≦x/a
c≦cx/a
f(x)≦{x√(a^2+c^2)}/a≦{x^2√(a^2+c^2)}/a^2
{a/√(a^2+c^2)}x≦1/f(x)
{a/√(a^2+c^2)}y≦1/f(y)
E(y)≦y^2{a^2+2m√(a^2+c^2)}/(2ma^2)}
[2ma^2/{a^2+2m√(a^2+c^2)}]/y^2≦1/E(y)
[16m^4a^8/{a^2+2m√(a^2+c^2)}^4]/y^8≦1/{E(y)}^4
[16m^4a^8/{a^2+2m√(a^2+c^2)}^4]/y^6≦y^2/{E(y)}^4
{a^2/(a^2+c^2)}(xy)≦x^2y^2/{f(x)f(y)}
0<a≦y≦xの時
L(x,y,z)={(x-y)^2+2xy(1+z)}/(2m)+f(x)+f(y)<x^2{ma^2+2a^2+2m√(a^2+c^2)}/(ma^2)
ma^2/{ma^2+2a^2+2m√(a^2+c^2)}/x^2<1/L(x,y,z)
K=16(a^12)(m^5)/[(a^2+c^2){a^2+2m√(a^2+c^2)}^4{ma^2+2a^2+2m√(a^2+c^2)}]
h(x,y,z)
=[x^2y^2/{f(x)f(y)}](x^2/{E(x)}^4+y^2/{E(y)}^4)[1/L(x,y,z)]
>{a^2/(a^2+c^2)}(xy)([8m^3a^6/{a^2+2m√(a^2+c^2)}^4]/y^6)[ma^2/{ma^2+2a^2+2m√(a^2+c^2)}/x^2]
>K/(xy^5)
S_n
>S1_n
=∫_{-1→1}∫_{a→a+1}∫_{y→n}h(x,y,z)dxdydz
>2K∫_{a→a+1}(1/y^5)∫_{y→n}(1/x)dxdy
=2K∫_{a→a+1}(1/y^5)[logx]_{y→n}dy
=2K∫_{a→a+1}(1/y^5)[logn-logy]dy
>{2K/(a+1)^5}[logn-log(a+1)]…………(1)
lim_{n→∞}S_n
≧lim_{n→∞}S1_n
≧lim_{n→∞}{2K/(a+1)^5}[logn-log(a+1)]
=∞
∴
S_nはlogn以上のオーダーで発散する
S4_n=2∫_{-1→1}∫_{a→n}∫_{y→2y}h(x,y,z)dxdydz
S2_n=2∫_{-1→1}∫_{a→n}∫_{2y→n}h(x,y,z)dxdydz
とすると
S4_n>0
S2_n>0
S_n=S4_n+S2_n
x<f(x)
1/f(x)<1/x
1/f(y)<1/y
x^2/(2m)<E(x)
1/E(x)<2m/x^2
1/E(y)<2m/y^2
1/{E(x)}^4<16m^4/x^8
1/{E(y)}^4<16m^4/y^8
x^2/{E(x)}^4<16m^4/x^6
y^2/{E(y)}^4<16m^4/y^6
x<L(x,y,z)
1/L(x,y,z)<1/x
x^2y^2/{f(x)f(y)}<xy
x^2/{E(x)}^4+y^2/{E(y)}^4<16m^4(1/x^6+1/y^6)
0<a≦y≦xの時
1/x≦1/y
1/x^6≦1/y^6
x^2/{E(x)}^4+y^2/{E(y)}^4<32m^4/y^6
x≦2yの時
1/y≦2/x
1/y^6≦64/x^6
x^2/{E(x)}^4+y^2/{E(y)}^4<1040m^4/x^6
h(x,y,z)
=[x^2y^2/{f(x)f(y)}](x^2/{E(x)}^4+y^2/{E(y)}^4)[1/L(x,y,z)]
<1040(m^4)y/x^6
S4_n
=2∫_{-1→1}∫_{a→n}∫_{y→2y}h(x,y,z)dxdydz
<4160m^4∫_{a→n}y∫_{y→2y}(1/x^6)dxdy
=832m^4∫_{a→n}y[-1/x^5]_{y→2y}dyd
=806m^4∫_{a→n}(1/y^4)dy
=(806m^4/3)[-1/y^3]_{a→n}
=(806m^4/3)(1/a^3-1/n^3)
<806m^4/(3a^3)
0<2a≦2y≦xの時
y≦x/2
y+x/2≦x
x/2≦x-y
x^2/4≦(x-y)^2
x^2/(8m)≦(x-y)^2/(2m)
x^2/(8m)<L(x,y,z)
1/L(x,y,z)<8m/x^2
h(x,y,z)
=[x^2y^2/{f(x)f(y)}](x^2/{E(x)}^4+y^2/{E(y)}^4)[1/L(x,y,z)]
<256m^5/(xy^5)
S2_n
=2∫_{-1→1}∫_{a→n}∫_{2y→n}h(x,y,z)dxdydz
<1024∫_{a→n}(1/y^5)∫_{2y→n}(1/x)dxdy
=1024∫_{a→n}(1/y^5)[logx]_{2y→n}dy
=1024∫_{a→n}(1/y^5)[logn-log2y]dy
<1024logn∫_{a→n}(1/y^5)dy
=256logn[-1/y^4]_{a→n}
=256logn(1/a^4-1/n^4)
<256logn/a^4
S_n
=S2_n+S4_n
<256logn/a^4+806m^4/(3a^3)
これと(1)から
2K/(a+1)^5≦lim_{n→∞}S_n/logn≦256/a^4
∴
S_nはlognのオーダーで発散する
お礼
素晴らしい解答をありがとうございました。