- 締切済み
RC直列回路の交流電源の過渡現象
今、RC直列回路の交流電源の過渡現象を解いているのですが、微分方程式で定常解と過渡解を出して合成する解き方と、ラプラス変換で解く方法のどちらがシンプルに解けるでしょうか。 ラプラス変換だと、部分分数分解や式を上手いこと変形しないといけないと思い、複雑になりそうなので微分方程式で解こうと思い、解き始めたのですが、、、 この場合の定常解はただのRC直列の交流回路としてi(t)を求めてよろしいのでしょうか。 過渡解を出そうとして、微分方程式を立てると、積分が出てくるのでqに対しての式にして、q(t)を求めたのですが、これを微分してi(t)の式として上で求めたi(t)と足して答えとしてよろしいのでしょうか。 t=0でスイッチON E=Emsin(ωt+θ) 初期値 q(0)=0 定常解 i(t)=(Emsin(ωt+θ+arctan(1/ωcR)))/√(R^2+(1/ωc)^2) 過渡解 q(t)=Ae^(-t/Rc) i(t)=-(A/Rc)e^(-t/Rc) この場合のi(0)は0になるのか、E/Rになるのかもよくわかりません。 答えにcosが出てくるのでどこか勘違いか間違いをしているようなのですが・・・ (Aにcosが出てくる?) よろしくお願いいたします。
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- 178-tall
- ベストアンサー率43% (762/1732)
回答No.1
>この場合の定常解はただのRC直列の交流回路としてi(t)を求めてよろしいのでしょうか。 OK そうな気配です。 cf. 参考 URL の式 (44)。