締切済み 電磁気学 電場 2015/04/16 20:38 「半径aの絶縁体球を正の電荷密度ρで一様に帯電させた時にできる、電場の向きを図で示しなさい。」 という問題です。添付した画像のように図を描いてみたのですが、正しいでしょうか。絶縁体球の外部と内部で電場の向きは変わらないと思うのですが・・・・・・・ それから、球対称に電荷が分布しているはずなので、絶縁体球と同心の半径rの球状のガウス面を任意で設定し、電場の向きを示す矢印を2本(外部と内部)だけ書き入れたのですが、適切な書き方でしょうか。 画像を拡大する みんなの回答 (1) 専門家の回答 みんなの回答 trytobe ベストアンサー率36% (3457/9591) 2015/04/16 22:56 回答No.1 重要なのは、 ・球の外側では、無限遠での電荷は0で、それに向かって正電荷が遠ざかっていく方向が電場の向き ・球の内側では、球の中心で球表面の電荷が全方向において相殺されるので、球の中心に向かって正電荷が押し込まれる方向が電場の向き という「理由」がわかるような絵を描くことかと思います。 質問者 補足 2015/04/17 23:23 御回答いただき、どうもありがとうございました。確認なのですが、御指摘の趣旨は、絶縁体球内部における電場については、矢印が中心にむかうように描くべきであったということでしょうか(私の絵では、球内部においては、中心から外側に向かう矢印を書いてしまいましたが) たびたびすみませんが、よろしく御教示下さい。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育自然科学物理学 関連するQ&A 電位・電場 『薄い導体の孤立した同心球殻において内球(半径R1)にQ1、外球(半径R2)にQ2の電荷を与えたとき、各点の電位Ф、および電場の大きさEをガウスの法則を用いて求めよ。』という問題があります。どの様にガウスの法則を用いて解いていくのか方針が今ひとつ分かりません。解説をよろしくお願いします。 コンデンサ内の電場の求め方 同心球状のコンデンサをその中心を通る平面で2つに切断したものがある(半球の球殻)そこ(外側電極)に+Qの正電荷を与え、内側電極(外側球殻と同心の球)は接地してある。このときコンデンサ内(誘電率ε)の電場は?(球の中心からの距離rを用いる) というのが問題です。 考えたのは 1、ガウスの法則を用いると内側が接地してあるので電場0?? 2、内側電極は接地してあっても外の+Qに対応して-Qの電荷を持ちガウスの法則を使って電場を求められる。 3、外側電極に対してガウスの法則を用いる。これだと求められなかった・・・ 電磁気学(電場を求める) 厚さ2dの無限に広い平板内に体積密度ρの電荷が一様に分布して おり、その一方の面上に面密度δの電荷が一様に分布している。 この時生じる電場を求めよ。 という問題なのですが、内部と外部について考えるみたいなのですがよくわかりません。 電荷がδあるほうの表面からは、δ/2ε。の電場が生じるのまではわかる のですが、そこからどう手をつけたらいいかわかりません。お願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 導体内の電場はなぜ0? 導体の定義から、導体の内部には電場は存在しない、とあるのですが、いまいちピンと来ません。なぜ、そう言えるんでしょか…? また、ある問題で、ある導体球に正の電荷Qが与えられていて、電荷は球の表面に、対称に分布している。という問題文があり、その回答には、「導体球の表面に電荷Qが分布しているので、半径rの球の内側には電荷はない」と解説があるのですが、言っていることは同じだと思うのですが、これもよく分かりません…。なぜ表面にQ帯電していると、内側には電荷がないのでしょう?何となく負の電荷がありそうな気がするのですが…? とても頭の中で混乱しているのかもしれません。よろしくお願いします。 次の電磁気学の問題を解いて下さい。 電化線密度λで一様に帯電している無限に長い直線状の電荷分布が作る電場(ベクトル→E)をガウスの法則を用いて求めよ。なお、求める電場の位置は、電荷が分布している直線から垂直距離でRの位置とする。向きを表す単位ベクトルは直線状電荷分布に平行に→e1、その単位ベクトルと垂直方向で電荷から離れる向きの単位ベクトルを→e2とすること。真空の誘電率はε0で表すこと。 よろしくお願いします。 大学の電磁気学についての問題です!! 大学の電磁気学についての問題です!! 半径a<bの同心導体球殻A,Bがあります。 Aに電荷+q、Bに電荷-qを与えました。 (1)A,B間の任意の点r(ベクトル)(a<r<b)における電場E(r)を求めなさい。 (2)同心球をコンデンサーとみるときの電気容量Cを求めなさい。 どうかおねがいします!!!!!同心導体球殻の特徴もできれば教えてください! 表面の電場って… 半径Rの球内部に一様に電荷が分布していて、半径rの閉曲面を設定して、ガウスの法則から電場を求めています。 このとき、R=rのときの電場Eはどのように表現すればよいのでしょう? 授業で、電荷の表面から直接は電気力線書いちゃだめだと聞いた気がするのですが、この場合も電場は無くなるのでしょうか? グラフで電場を表したとき、1次関数と反比例のつなぎ目(r=Rの箇所)が数値的に連続させてよいのでしょうか?いくつかの参考書のグラフはつなげて書いてありましたが、詳しい説明がなく、よくわかりません。 高校で物理を履修していない大学生なので、できるだけ易しい言葉でご説明いただければうれしいです。よろしくお願いします。 電磁気学の問題です 内球の半径がa、外球殻の内外半径がそれぞれb、cである同心球導体が真空中に置かれている。 それぞれに+Qおよび-Qの電荷を帯電させたときの静電エネルギーWを求めよ。 解答:W=Q^2/8πε (1/a-1/b) さっぱり分からないので解答までの導出を詳しく教えてください。 電磁気学(静電場) 一様に帯電した半径Rの薄い円板の軸上で、中心から距離rの点Pにおける電場を計算せよ。 という問題なのですが、 円板を、円板の軸がx軸に一致するようにyz平面において考えました。 電荷の面密度をσとすると、z軸上のσがつくる点Pでの電位は (σ/4πε)(1/(r^2+z^2)^(1/2)) で、それをz:0→R、θ:0→2πまで積分すると、 点Pでの電位は φ=(σ/2ε)log((R+(r^2+R^2)^(1/2))/r) となったのですが、ここからどうすればいいのかわかりません。 そもそもE=-∇φを使おうと思って電位を出したのですが、φをどのように微分すればいいかわかりません。 因みに答えは 向きはr方向で、大きさは (σ/2ε)(1-(r/(r^2+R^2)^(1/2))) となっています。 宜しくお願いします。 電磁気学 半径αの球の内部に一様な密度ρで電荷が分布しているとき、球の内外の電場の強さを求めよ 電磁気学の問題です。 編入試験の過去問のため、解答がありません。 1. 半径aの球があり、その内部は電荷密度ρで一様に帯電している。 球の中心からの距離がrの位置での静電ポテンシャルをr<aとr>aの場合について、それぞれ求 めよ。ただし、無限遠点での静電ポテンシャルを0とする。 よくみかける問題のようで少し違います。r<aとr>aの場合とあるため、積分区間がわかりませ ん。よくみかける問題はr≦aで、内部の電場をr→aで+外部の電場をa→無限で積分しますよ ね?というわけで、区間が分からないです。 2. 半径aの薄い円筒状の導体が接地しておかれている。いま、円筒の中心軸上に細い導線を張り、 線密度ρの静電荷を与えた。円筒および導線は無限に長いものとする。 1)導線が円筒内につくる電場の向きを答えよ。また、その大きさを中心軸からの距離rの関数とし て求めよ。 2)円筒上には面密度σの負電荷が一様に誘導される。σを求めよ。 3)円筒内を電位φを求めよ。 上記の問題は接地という言葉があり、調べてもよくわかりませんでしたので、よければ、接地に対 しての考え方も教えてください。2)はシンプルでもかまいません。1)、2)はなるべく細かく教えてくだ さい。 ※ 1.2.両方とも電位はただ載せるだけではなく求め方(積分区間等)も教えてください。 以上です。独学ですので、易しい回答をお願いします 電磁気学の問題 一様な電場E₀(ベクトル)の中に、帯電していない半径Rの導体球を置いた。 この時、球の回りに生じる電場は、球の中心に置いた電気双極子モーメントp(ベクトル)=4πε₀R³E₀が発生する電場と電場E₀を重ね合わせた電場と同じになることを証明せよ。 E₀は球の回りを、同じ方向を向いています。下の図 → → → → → → → 球 → → → → → → → このような問題なのですが、全くわかりません。 方針だけでもいいので教えてください。 お願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 電磁気学の問題で質問です。 編入試験の過去問のため、解答がありません。 1. 半径aの球があり、その内部は電荷密度ρで一様に帯電している。 球の中心からの距離がrの位置での静電ポテンシャルをr<aとr>aの場合について、それぞれ求 めよ。ただし、無限遠点での静電ポテンシャルを0とする。 よくみかける問題のようで少し違います。r<aとr>aの場合とあるため、積分区間がわかりませ ん。よくみかける問題はr≦aで、内部の電場をr→aで+外部の電場をa→無限で積分しますよ ね?というわけで、区間が分からないです。 2. 半径aの薄い円筒状の導体が接地しておかれている。いま、円筒の中心軸上に細い導線を張り、 線密度ρの静電荷を与えた。円筒および導線は無限に長いものとする。 1)導線が円筒内につくる電場の向きを答えよ。また、その大きさを中心軸からの距離rの関数とし て求めよ。 2)円筒上には面密度σの負電荷が一様に誘導される。σを求めよ。 3)円筒内を電位φを求めよ。 上記の問題は接地という言葉があり、調べてもよくわかりませんでしたので、よければ、接地に対 しての考え方も教えてください。2)はシンプルでもかまいません。1)、2)はなるべく細かく教えてくだ さい。 以上です。独学ですので、易しい回答をお願いします。 電場と電位を求めたい。 2つ質問があります。 1つめ。 「真空中に一様に帯電している半径Rの球があり、電荷の合計はQであった。球の内部r<Rの点での電場を求めよ。ただしr=0の電位を0とする基準をとる。」 という問題なのですが、無限遠方で0になるように基準をとる話ならば本に載っていたのですが、この話ではどうやって解いていいのか戸惑っています・・・。 2つめ。添付した画像を見てください。 「図のように無限に長く太さの無視できる導体棒に線密度λで電荷が一様に分布している。 ガウスの法則を用いて導体の中心から距離l離れた点Pに作られる電場と電位を求めよ。(電位は無限遠方で0になるように基準をとる)」 という問題です。 できたら途中式まで詳しく書いてくださると助かります。よろしくお願いします! この電磁気学の問題を解いてください。 半径aの無限に長い円柱が電荷密度pで一様に帯電しているときの電場を求める。円柱の中心軸をz軸にとる。z軸から距離rだけ離れた点P(x,y,0)の電場を考える点Pが円柱の内部にある時、点Pにおける電場の大きさを求めよ。また、電場ベクトル→E(x,y,z)=(Ex,Ey,Ez)を記せ。 よろしくお願いします。 電磁気学の問題です。 電磁気学の問題です。 電荷密度ρ=3Q/4πa^3で一様に帯電した半径aの電場をr≧a、r>aにわけて求めよという問題なのですが、教えて頂きたいです(;_;) ガウスの法則の電場の求め方についての質問です 問.半径aの級の中心に+Qの点電荷があり、点電荷を覆うように中心から半径aの球表面に一様な密度で負電荷が分布しており、その総量を-Qとする。このとき、球の中心からの距離をrとし、球の内外の電場をガウスの法則を用いて求めよ。 という問題で、r>aのとき-Qと+Qによって打ち消されE(r)=0になるのはわかるのですが、 r<aのときは「内部の正電荷のみ電場に関連する」 よって E(r) = Q/4πεr^2 とあります。 内部でも表面の電荷-Qが影響し2倍になるように感じるのですが違うのでしょうか。 どなたかよろしくお願いします。 電磁気学 原点に電荷があるとき、 divは原点では∞、それ以外では0になりますよね。 ガウスの法則、定理を半径Rの球(原点に電荷q)に適用にすると ∫EdS=∫divEdV=Q/ε divは0か∞しか取らないのにQ/εのように定数が出てくるのは変と思ったのですが、 どこで間違えたのでしょうか? どなたか時間がありましたら回答お願いします。 電磁気学が難しく授業についていけていません(~_~ 以下の問題が分かりません… 1.真空中に半径aの導体球があり、+Qに帯電されている。この導体球を囲うように、半径b(b>a)の薄い球殻が置かれている。球殻には均一に合計-Qの電荷を帯電させた。導体球と球殻の中心は一致している。以下の問いに答えよ。 1)球殻の中心を原点とするとき、げんてんからの位置ベクトルrの点での電界を求めよ。 2)空間に蓄えられる静電エネルギーUをもとめよ。 2.断面の半径がaで長さが無限大の円柱上の物体の内部を一様に電流Iが流れている。またこの円柱状物体と中心軸が一致した長さが無限大で半径がb(b>a)の薄い円菅に一様に電流Iが円柱状物体の電流と同じ向きに流れている。このときの磁界の大きさをアンペールの法則(積分形)を適用して求めよ。 長くなってしまい、すみませんm(_ _)m 1)はなんとかできたとはおもいますが、球殻と導体球が実際どのような電界が出ているのかがイメージできません(~_~;) 電磁気学の問題 「半径aの細い円環に一様な線密度bで分布した電荷の中心軸上高さzの点の電場の向きと大きさを求めよ」という問題が分かりません。向きは上だと思うんですが・・・ よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 自然科学 理科(小学校・中学校)化学物理学科学生物学地学天文学・宇宙科学環境学・生態学その他(自然科学) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
補足
御回答いただき、どうもありがとうございました。確認なのですが、御指摘の趣旨は、絶縁体球内部における電場については、矢印が中心にむかうように描くべきであったということでしょうか(私の絵では、球内部においては、中心から外側に向かう矢印を書いてしまいましたが) たびたびすみませんが、よろしく御教示下さい。