ベストアンサー 固体物理、物性物理の質問 2014/04/28 02:26 平面の格子空間で、基本単位格子を描けという問題が出された場合、 (1)ウィグナーサイツセル (2)4点を結んで最も小さい平行四辺形をつくる のうち、(1)と(2)のどちらでも正解ですか? 画像を拡大する みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー 101325 ベストアンサー率80% (495/617) 2014/04/28 23:47 回答No.2 平面格子の図が与えられていて、その図に基本単位格子を書き加える問題であれば、(1)と(2)のどちらでも正解です。 ちなみに、二次元のブラベー格子は5種類あります。 通報する ありがとう 0 広告を見て他の回答を表示する(1) その他の回答 (1) wata717 ベストアンサー率44% (72/161) 2014/04/28 06:55 回答No.1 ブラベー格子を描くべきではないでしょうか。2次元では4個存在します。 通報する ありがとう 0 カテゴリ 学問・教育自然科学物理学 関連するQ&A 固体物理での逆格子ベクトルについて 逆格子空間での基本単位格子ベクトルに相当するものは、例えば、a1ベクトルに対するものとして、 b1=2π(a2×a3)/{a1・(a2×a3)}として表されていますが、この式がどこからどういう理論、考え方に基づいて出てきたのか分からず、もやもやしています。 キッテルの固体物理の教科書など固体物理の教科書を何冊か見てみたのですが、どれもその式がいきなり出ており、詳しい説明が書かれていません。 一体この式は、どうやって出てきたのでしょうか? 回答宜しくお願いします。 ブラベー格子... 基本並進ベクトルで表せれる平行六面体が単位格子で、これの積み重ねによって結晶空間は埋め尽くすことができるのはわかりました。 それとブラベー格子との関係がはっきりしません。 参考書を読んでいると、単位格子のとり方は14通りしかなくこの14種類をブラベー格子というと、とらえていますがなにか違う気がします。 どう理解すればいいのか教えてください。お願いします。 格子点問題 平行四辺形 「xy平面上に格子点を4頂点とする面積が3の平行四辺形Tがある。Tの内部(周は除く)の格子点の個数をNとする。Nのとりうる値をすべて求めよ」 この問題を解いています。 Tのうち1点が原点にあるとして、面積が3ということは、Tは底辺1高さ3、または底辺3高さ1のものしかないのでしょうか? このとき前者のNは0となるのでしょうか? また後者のほうは多くのパターンがあると思うのですがうまく数え上げる方法はあるのでしょうか? 困っています。回答いただければ幸いです。よろしくお願いします 空間における三角形の面積は外積で求められない? 平面における三角形の面積は、外積(平行四辺形の面積)を 2で割って求められました。 空間における三角形の面積を求めようと、外積を求め2で割っても 三角形の面積になりませんでした。 なぜなのでしょうか? 軌跡と領域について質問なのですが、xy平面状で 軌跡と領域について質問なのですが、xy平面状で A(1、1) B(0、0) C(3、-3) D(4、-2) の点を取り、ABCDの順番で結びます。すると、ABCDは平行四辺形になると思います。 ここで、この平行四辺形上にある点x及びyについて(境界含みます) K=2x+yの取りうる値の最大と最小を求めます。y=-2x+kより、y切片を考えると、最大は、この直線が、Dを通る。すなわち、(x、y)=(4、-2)で、kは6が最大。 最小は、同様にy切片を考えると、Bを通るとき、すなはち(x、y)=(0、0)で、kは0が最小。 と考えて正解ですか? 円と球の内部の格子点について 円と球の内部の格子点についてですが。 格子点とは座標系において、その値が整数であるような点のことです。たとえば、二次元平面(xy平面)では、(1、1)や(2、1)といった点を指し、(1.2、2.5)といった少数や分数となるような点は格子点ではありません。 問題はここからです。 xy平面において、原点中心、半径rの円を考えたとき、その内部に含まれる格子点の数をSrとする。ここで、rは正の整数とする。(例えば、単位円(r=1)の場合、条件を満たす格子点は(0,0)、(0,1)、(1,0)、(-1,0)、(0 ,-1)であるからS1=5である。) Srを求めよ。これはもちろんrの関数になります。 次に、xyz座標空間になったとき、原点中心、半径rの球を考えたとき、その内部に含まれる格子点の数をVrとする。Vrを求めよ。 Vr/Sr をn→∞としたときの値を求めよ。 おそらく、これは発散するかと思います。SrやVrの求め方はおそらく区分求積法、法則性を見つけ出す(数列の漸化式を解く)方法かとも思うんですが、よくできないので、教えてください。 また、この極限値の問題はnC2 と nC3 に関係があるかと思います。 できれば、ヒントだけでなく、「答え」を教えてもらえるとありがたいです。 空間ベクトル 三点A(1,2,-1) B(3,4,-1) C(2,3,-1+√2) Dを頂点とする、平行四辺形ADBCが あるとき点Dの座標を求めよ。 また、この平行四辺形の面積を求めよ。 数Bの空間ベクトルです。 体心立方格子の基本単位格子 キッテルの固体物理学入門第八版のP.11の図9に体心立方格子の基本単位格子が書いてありますが,その基本単位格子以外にも基本単位格子は存在しますよね.そこで,体心立方格子の底面4つと体心の位置の4つを結んでできる平行六面体(図にのせたものです.)は基本単位格子になっていると思うのですが,あっていますか ? 4点の囲む領域の座標 平面座標(X, Y)の4点(平行四辺形)が与えられたとします。ある点が、その4点の座標内にあるか、無いかを調べる方法を教えて頂けないでしょうか? ゴーシュ四辺形 立体幾何の問題がわからないので質問します。 ゴーシュ四辺形ABCDは、添付した図のように対角線BDが分ける2つの三角形ABDとCBDとが、別々の平面上にあるものである。(もしほかの対角線ACを引けば、これと同じように2つの三角形BACとDACとは別々の平面上にある。また2つの対角線AC,BDは同一平面上にない。)という定義があって、 問題は、ゴーシュ四辺形の対辺が2組とも垂直であるときは、対辺の平方の和は相等しい事を証明する。 自分は、対辺の中点を結んで中点連結定理を使えば、各辺に平行な直線で長方形をつくれると考えたのですが、それでは、対辺の長さを比較するには、まわりくどそうですし、わからなかった。解説をよめば、四辺形の2隣辺を2辺とする平行四辺形を作れ。と書いてありました。対辺が垂直だから、解説のとおりに作った平行四辺形は、長方形になることがあり、その場合は隣辺の長さが違うので、証明できないとおもいます。もし解説のとおりに作った平行四辺形が、いつも正方形なら、証明はできると思いました。どなたかなぜ対辺の平方の和は相等しいのかを解説してください。お願いします。 座標平面上に平行四辺形ABCDがある。A(-1,4)B(-3,-2)C 座標平面上に平行四辺形ABCDがある。A(-1,4)B(-3,-2)C(3,-1)D(5,5)のとき、平行四辺形ABCDは点対称な図形である。対称の中心の座標を求めなさい。 また、平行四辺形ABCDの面積を求めなさい。ただし、座標軸の1めもりを1cmとする。 この2問です。 分かる方、よろしくお願いします。 図形問題質問です。 (1)平行について。以下の8文の中で正しいのはどれか?正しくないものには理由をあげなさい。 1つの「平面」に「平行」な2つの「平面」は互いに平行である 1つの「平面」に「平行」な2つの「直線」は互いに平行である 1つの「平面」に「垂直」な2つの「平面」は互いに平行である 1つの「平面」に「垂直」な2つの「直線」は互いに平行である 1つの「直線」に「平行」な2つの「平面」は互いに平行である 1つの「直線」に「平行」な2つの「直線」は互いに平行である 1つの「直線」に「垂直」な2つの「平面」は互いに平行である 1つの「直線」に「垂直」な2つの「直線」は互いに平行である (2)空間に直線や平面があるとき、ア~オの文のうち正しいものを 2つ選びなさい。 ア、1つの直線に平行な2つの平面は平行である イ、1つの平面に垂直な2つの直線は平行である ウ、1つの直線に垂直な2つの直線は平行である エ、1つの平面に垂直な2つの平面は平行である オ、1つの直線に垂直な2つの平面は平行である (1)と(2)がわからないのと答えがそれぞれ違います。(1)にない答えが(2)にあったりとします。なぜですか? 問題の解答解説交えておしえてください。お願いします。 最密六方格子ー逆格子 最密六方格子の実格子および逆格子における基本並進ベクトルを記述せよ。また、それぞれの体積、空間充填率、単位胞中の原子数を求めよ。 格子定数:a この問題を教えてください。 実格子についてはわかったんですが、逆格子についてが分かりません。 4点 必要十分条件 平面上の異なる4点をA,B,C,Dとすると、AC⊥BDであるための必要十分条件は AB²+CD²=AD²+BC²である。これを証明するとき、 必要条件かどうかは、AC⊥BDとし、ACとBDとの交点Oとする。・・・で納得できたのですが、 十分条件かどうかを証明するとき、AB,ADを2辺とする平行四辺形ABEDをつくると、と証明が続いていくのがわかりません。平面上の異なる4点が台形の場合を除いていると思います。 なぜ平行四辺形ABEDでいいのかを解説してください。お願いします。 数学の問題です。難しいと思います。 同一直線上にない3点があるとき、この3点を頂点とする平行四辺形は3つできますよね。 それでは、同一n-2次元空間上にないn点があるとき、このn点を頂点とするn-1次元平行立体はいくつ出来ますか? 空間ベクトルに関する質問 平面ですと、平行でない2つのベクトルがあったとき、そのベクトル同士のなす角が一意に決まりますが、空間ですと、 (同じく平行でないとき)でもベクトル同士が交わる場合もあれば、ねじれの位置になる場合もあるので、そのなす角とは、どう考えたらよいのでしょう? ベクトルの定義のところで、ベクトルは平行移動してもよいとなっています。 空間ベクトルでも、ねじれの位置にある2つのベクトルを、平行移動して始点を原点に移動して、そのなす角を考えても良いのでしょうか? よろしくお願いします。 長方形は平行四辺形に属する?? 問「~で平行四辺形が存在することを示せ」 という問題で解法には 「四角形PQRSでPQ(ベクトル)=SR(ベクトル)を示せばいい」 とあるんですが、これだけでどうして大丈夫なんでしょうか? これだと長方形を除外していなくて十分条件にはならなのではないかと 思うんですが・・・。 これが正解ということは、長方形は平行四辺形の一種であると考えるべきなんでしょうか? 正射影の問題です 空間内に平面αがある。一辺の長さが1の正四面体Vのα上への正射影の面積をSとし、 Vがいろいろと位置を変えるときのSの最大値と最小値をもとめよ、 ただし空間の点Pを通ってαに垂直な直線がαと交わる点をPのα上へn正射影といい、 空間図形Fの各点αへの正射影全体のつくるα上の図形をVのαへの正射影という。 「http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1113861766 yahooで聞くとこうだったのですが、 (1)「4面体の対辺の距離でもあります」とあったのですが、その距離はどのようにして求めたらいいですか。 (2)「一つを平行移動して正方形にしても,正射影の4角形の面積に変化はありません.」というのは、三角形の片側の高さが減っても片側が同じ分高さが増えるからでしょうか。 (3)「この正方形の正射影は平行四辺形になりますが, 最大はαと平行な状態で面積は1/2です.」とありますが、これは平行四辺形の対角線がどちらも1だからですよね? その他意見がありましたらよろしくおねがいします・・・。 」 「」内のことは触れずに普通に回答がもらえても感謝感激です…。 中学三年生の数学です。教えてください。 座標平面上に4点A(-3,3),B(-5,-5),C(1,-4),D(a,b)がある。四角形ABCDが平行四辺形になるとき、次の問いに答えよ。ただし、a>0,b>0とする。 (1) 点Dの座標を求めよ。 (2) 直線ACと直線BDの交点の座標を求めよ。 (3) 平行四辺形ABCDの面積を求めよ。 わかりやすく お願いします。 幾何学の図形の問題を教えて下さい。 平面での、この問題が分かりません。 問題:平行四辺形に対して4辺の長さの2乗和は対角線の長さの2乗和に等しい事を示しなさい です。分かる方教えて下さい。お願いします 注目のQ&A 「前置詞」が入った曲といえば? 緊急性のない救急車の利用は罪になるの? 助手席で寝ると怒る運転手 世界がEV車に全部切り替えてしまうなら ハズキルーペのCMって…。 全て黒の5色ペンが、欲しいです 長距離だったりしても 老人ホームが自分の住所になるのか? 彼氏と付き合って2日目で別れを告げられショックです 店長のチクチク言葉の対処法 カテゴリ 学問・教育 自然科学 理科(小学校・中学校)化学物理学科学生物学地学天文学・宇宙科学環境学・生態学その他(自然科学) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど