ベストアンサー ※ ChatGPTを利用し、要約された質問です(原文:増減表の×と0) 増減表の×と0 2013/02/16 16:38 このQ&Aのポイント 次の関数 y=x^2/x+1 の極値を求める増減表より極大値-4(x=12のとき)、極小値0(x=のとき)上の増減表で、x=0のとき、y´とyが×となっているのですが、なぜ0ではいけないのですか? 増減表の×と0 次の問題の回答で分からない所があります。 (問) 次の関数 y=x^2/x+1 の極値を求めよ。 (答) y´=2x(x+1)-x^2・1/(x+1)^2 =x^2+2x/(x+1)^2 x … -2 … -1 … 0 … y´ 正 0 負 × 負 0 正 y (右上矢印) -4 (右下矢印) × (右下矢印) 0 (右上矢印) 増減表より極大値-4(x=12のとき)、極小値0(x=のとき) 上の増減表で、x=0のとき、y´とyが×となっているのですが、なぜ0ではいけないのですか? 0と×の区別がつきません。 見にくくてすみません。 教えて下さい。お願いします。 質問の原文を閉じる 質問の原文を表示する みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー naniwacchi ベストアンサー率47% (942/1970) 2013/02/16 16:42 回答No.1 ×は定義域で考える。 質問者 お礼 2013/02/16 17:09 分数においての定義を失念してました! ×は存在しないことを表しているのですね。 ありがとうございます。 すっきりしました。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A f(x)=tanx-2x の増減表とグラフ 数IIIの問題なのですが、 f(x)=tanx-2x の増減表(f(x), f'(x),f"(x)を含める)を使ってグラフを書け と言うものです。 やってみたのですが、どうしても正しいと思われる答えにたどりつけません。 どなたか正しい答えとその導き方を教えて下さい。 以下は私がやってみたことです。 f'(x)=sec^2x-2 f"(x)=2sec^2xtanx これをもとに増減表を書いて、 (右上矢印)極大(右下矢印)変曲点(右下矢印)極小(右上矢印) となりました。 そして極大値と極小値も出してみたのですが、どうも間違っているようです。 極大=-0.57 極小=0.57 増減表について いきなり問題ですが、y=sinx-xcosxの極値を求めよ、ただし0≦x≦2πである。 この問題でy'=0となるのはx=0,π,2πですよね。これで0≦x≦2πの範囲で増減表を書くと、πで極大となるのは明らかなのですが、x=0,2πでは極値を取るかどうかは、0≦x≦2πの範囲の増減表からは分かりませんよね?ここで質問です。 (1)増減表を書くときには、いつもどおり指定された範囲だけ書けばいいのでしょうか?たとえ、極値を取るかどうか分からない値が合っても。 (2)増減表とは少し違う質問ですが、上の問題のx=2πでは、範囲がなければ極小値を取ると思いますが、範囲がある場合、x=2πで極小値を取るというのでしょうか? (3)グラフを書くときの質問ですが、増減表で指定された範囲しか書いていなくても、グラフは範囲外を点線などで書いておくべきなのでしょうか? 微分 問題を解いたのですが、自分の答えがあっているか不安なので、間違っているか教えてくれませんか? 問1 次の導関数を求めよ。 (1) y=(sinx + x^2)^(4/3) (2) y={(e^2x + 1)^(1/2)}/e^(-x) 問2 次の導関数を求めよ。 (3) y=arccos2x/sinx 問3 次の極値を求めよ。 (4) y=x+2sinx (0≦x≦2π) (5) y=x^(1/2)-logx 自分の解答 (1) y'=(4/3)(cosx+x^2)(sinx+x^2)^(1/3) (2) y'={(e^2x +1)^(1/2)+(e^2x +1}/(e^-x)(e^2x +1)^(1/2) (3) y'=-[{2sinx/(1-4x^2)}+cosx・arccos2x]/sin^2 x (4) 自信がないので全部書きます。 y'=1+2cosx=0 よってcosx=-1/2 x=2π/3 増減表を書くと x 2π …4π/3… 2π/3 … 0 y + - + z /極大 \ 極小 / (/は右上の矢印のことです) よって極大値は y=4π/3-√3 極小値は y=2π/3+√3 ここで、疑問なのですが、極大値より極小値のほうが値が大きいと思うのですが、これでいいのでしょうか? (5) y'=0より、x=4となる 増減表を書くと x 0 … 4 … y - + z \ 極小 / (/は右上, \は右下の矢印のことです) よって極小値は y=2-2log2 このような解答になりましたがどうでしょうか? 微分 問題を解いたのですが、自分の答えがあっているか不安なので、間違っているか教えてくれませんか? 問1 次の導関数を求めよ。 (1) y=(sinx + x^2)^(4/3) (2) y={(e^2x + 1)^(1/2)}/e^(-x) 問2 次の導関数を求めよ。 (3) y=arccos2x/sinx 問3 次の極値を求めよ。 (4) y=x+2sinx (0≦x≦2π) (5) y=x^(1/2)-logx 自分の解答 (1) y'=(4/3)(cosx+x^2)(sinx+x^2)^(1/3) (2) y'={(e^2x +1)^(1/2)+(e^2x +1}/(e^-x)(e^2x +1)^(1/2) (3) y'=-[{2sinx/(1-4x^2)}+cosx・arccos2x]/sin^2 x (4) 自信がないので全部書きます。 y'=1+2cosx=0 よってcosx=-1/2 x=2π/3 増減表を書くと x 2π …4π/3… 2π/3 … 0 y + - + z /極大 \ 極小 / (/は右上の矢印のことです) よって極大値は y=4π/3-√3 極小値は y=2π/3+√3 ここで、疑問なのですが、極大値より極小値のほうが値が大きいと思うのですが、これでいいのでしょうか? (5) y'=0より、x=4となる 増減表を書くと x 0 … 4 … y - + z \ 極小 / (/は右上, \は右下の矢印のことです) よって極小値は y=2-2log2 このような解答になりましたがどうでしょうか? 数学 微分 増減表 関数y=x^3+3x^2+1の増減を調べよ。 導関数にしてy=3x^2+6x=0 y=3x(x+2) x=-2、0で増減表の答えは x │……│-2│……│ 0 │……│ y’ │ + │ 0 │ + │ 0 │ + │ y │ (右上矢印) │5│ (右下矢印) │ 1 │ (右上矢印) │ になるんですが、なぜX<-2でy’はーになるんじゃないんでしょうか? 微分の増減表について 微分の増減表について、 増減表にはx,y',yとそれぞれ書いていきますが、 グラフを書いたり、極大・極小を知る上で y'の欄の必要性が分かりません。 恐らく増減表の本質を知らないのだと思います。 お教えください。 関数の増減と極大・極小の問題です 関数の増減と極大・極小の問題です 方程式2x^3-3x^2-12x+5-p=0が正の解を1個、異なる負の解を2個もつような定数pの値の範囲を求めよ、という問題です。 増減表を埋めて、x=-1のとき極大値12-p、x=2のとき極小値-15-p というところまでは解ったのですが、(この時点で間違えているかもしれません(汗 その後のpの求め方がわかりません。 解説よろしくお願いします。 数IIIの微積分について 自分は受験生で今、微積分の問題を解いていてわからないことがあったので質問させて下さい。 y=sinx+1/2sin2x(0≦x≦2π)の増減表とグラフを描くという問題でy‘=0のときx=π/3、π、5π/3です。 しかしπ/3→πで負、π→5π/3でも負になり(右上矢印) 0 (右下矢印) 0 (右下矢印) 0 (右上矢印)という増減になります。 これはどういうことなのでしょうか?回答お願いいたします 増減表について f(x) = e^-x・cosx (0<=x<=2π)の増減、極値、グラフの凹凸、変曲点を調べ、 増減表を書きグラフの概略を示せ という問題についてなのですが、 y' = (-√2)e^-x・cos(x-π/4) y''= 2e^-x・cos(x-π/2) (※2つともcosで合成してます。) としてy'=y''=0とおき、e^-xの項は正の値しかとらないので消去 それぞれy'は3/4π,7/4π、y''については0,π,2πと出たのは良いのですが、 この通りに増減表を書くとおかしなグラフになってしまいました。 f(x)を見る限りでは結果的にcosxを減衰したようなグラフの形になるはずですよね…? 何処がおかしいのか教えていただけないでしょうか? よろしくお願いします。 増減表についての疑問 増減表を書くときに微分した式が単調増加とわかったなら、極値の前後は必ず負→正となるのでしょうか? 増減表について 関数の増減と極値で、問題y=x√(x-4x^2)の増減表の書き方が分からなくて困っています。x-4x^2=tと置いた時dy/dx=1/2√x(1-8x)というのが出たんですけど・・・増減表がいまいちわかりません。 もしよろしければ、最初から説明してくれると助かります。途中で出た数字も合ってるのかわからないので・・・。 数学 微分 増減表 次の関数について、極値を調べ、そのグラフをかけ (1)y=3x^2ー6x-5 y’=6xー6=0 y’=6(x-1)=0 x=1、0 で増減表のXの値が x │……│-1│……│ 1│……│ と書かれていたのですが、x │……│0│……│ 1 │……│ じゃないんでしょうか? 極限・微分の定理(高校数学) ところどころ止まってしまっています。 (1)はまず、真数>0より、x>0、f`(x)=(2logx-3)/x^3 これを=0としてx=e^3/2 0より大きいところで増減表をかくと、↓-1/(2e^3)↑ x→∞は→0なのはわかるのですが、 x→+0はy軸にそって正に無限大ですよね? (2)は極値をもつ条件はg`(x)の符号が正から負、負から正になったとき、 それぞれ極小、極大と言えたと思うんですが、 実際答案として描くとすると、どのように書けばよいのでしょうか? (3)は(2)のaの範囲を踏まえて、a=と分けてY=aとの交点の個数を求めるのでしょうか? あいまいな部分が多いです。ご指導、よろしくお願いいたします。 aは実数の定数とするとき、 f(x)=(1-logx)/x^2、g(x)=x+(a+logx)/x (ただし、limx→∞logx/x=0は用いてよい) (1)f(x)の増減を調べて、グラフをかけ。 (2)g(x)が極大値、極小値をもつためのaの条件を求めよ。 (3)(2)のとき、方程式g(x)=0の実数解の個数を求めよ。 数3微分の応用・極値について 次の関数の極値を求めよ y=(1/x)-(4/x-1) という問題なのですが どうしても極小値が極大値よりも大きくなってしまいます。 極小値が極大値よりも大きくなることはありえるのでしょうか? 増減表のかきかた はじめまして。 関数f(x)=(x^2)logx(x>0)を考える。 y=f(x)の増減と凹凸を調べ、グラフをかけ。lim(x→+0)x^2logx=0を用いてよい。 この問題なんですが、計算をして、x=1/√eのとき極小値をとり、x=1/e√eのとき変曲点をとることがわかりました。 増減表の書き方なんですが、f(x)=0になるのはx=0,1なので、この値も増減表の範囲に入れるんですか?lim(x→+0)x^2logx=0を用いてよい。とあるので、原点は定義されないのはわかるのですが、いまいち範囲がわかりません。 難しいかもしれませんが、できれば模範解答のように、実際に増減表を書いて、わかりやすく教えていただきたいです。 +と-のとり方を主に教えて下さい。お願いします! 増減表について グラフを描いたり極値を求めたりする際、記述答案では必ず解答用紙には『増減表』を書かないとダメなのでしょうか?例えば関数の積が与えられてて片方が明らかに正で、もう片方が二次関数だとしたらその二次関数とx軸のグラフを描けば増減は一目で分かりますよね?もちろん一次関数ならなおさら簡単ですが...僕の先生はこの図を『増減図』と名づけて使っているんですが、他の先生にも聞いてみると「増減表は作法だから書かなきゃ減点されるね」とおっしゃっていました。増減表を書く書かないでそんなに苦になるわけではありませんが、一応知っておきたいので教えてください。 増減表 こんばんは☆ 問.次の関数の最大値,最小値を求めよ。 y=sin2x+2sinx(0≦x≦π) という問題なんですが、解答の増減表のy'のx=0の時と、x=πの部分だけ空欄(斜線ではない)になっていて、どうして斜線ではなく空欄なのかがわからなくて息詰まってしまいました。 理由がわかる方が居たら解答お願いします。 添削願い f{x}=sinx/{2+cosx}のf'{x}とf{x}の極値を求めよ。という問題です。間違っていたら教えてください f'{x}={2cosx+cos^2x+sin^2x}/{2+cos^2x} ={2cosx+1}/{2+cosx}^2 ......{答} また、f{x}が極値を持つための条件はf'{x}に符号変化が起こればよいので、(分母)>0より 2cosx+1=0 x=2π/3,4π/3 で増減表より x 0 ... 2π/3 ... 4π/3 ... 2π y' + 0 - 0 + y ↑ 極大 ↓ 極小 ↓ 極大値 √3/3 x=2π/3 極小値 -√3/3 x=4π/3 ....(答) 増減表、極値 f(x)=x^3-6x^2+12x+48の増減表をかき、極値をもとめよ。 極大値、極小値 関数y=sinx+cosx (0≦x≦2π)がある。 以下の問に答えなさい。 (1)yの導関数を求め、関数yの増減と極大値、極小値を調べなさい。 y'=cosx-sinx y'=0について、求めて増減表を作るんだと思うのですが y'=0について求めることができません。どのようにすればよいでしょうか?? 初歩的な質問ですがよろしくお願いします。 注目のQ&A 「前置詞」が入った曲といえば? 新幹線で駅弁食べますか? ポテチを毎日3袋ずつ食べています。 優しいモラハラの見抜き方ってあるのか モテる女性の特徴は? 口蓋裂と結婚 らくになりたい 喪女の恋愛、結婚 炭酸水の使い道は キリスト教やユダヤ教は、人殺しは地獄行きですか? カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど
お礼
分数においての定義を失念してました! ×は存在しないことを表しているのですね。 ありがとうございます。 すっきりしました。