ベストアンサー 三点より角度の求め方・解答を教えて下さい 2013/01/22 09:38 三点 A(1,-2,3).B(2,4,-1).C(2,4,-1)とするとき、角BACは何度? という問題なのですが余弦定理の使い方わかりません。 できれば解答も教えて下さい。 みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー ponta1971 ベストアンサー率30% (361/1191) 2013/01/22 09:44 回答No.1 たぶん書き間違えだとおもいますが・・・。 BとCが同じ点なので、直線になります。 あえて言えば、0度でしょうか。 質問者 お礼 2013/02/06 17:34 出題側のミスでした。ありがとうございます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (2) hashioogi ベストアンサー率25% (102/404) 2013/01/22 13:06 回答No.3 ベクトルX(a,b,c)とベクトルY(d,e,f)の内積の計算方法は2通りあって、 一つ目は|X||Y|cosθ(θはベクトルXとYがなす角度) 二つ目はad+be+cf これを利用すると思う。 質問者 お礼 2013/02/06 17:35 ありがとうございます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 asuncion ベストアンサー率33% (2127/6290) 2013/01/22 09:44 回答No.2 点Bと点Cの座標が同じになっています。どちらかが間違っていませんか? 質問者 お礼 2013/02/06 17:36 指摘ありがとうございます。問題が間違えられて作られていたそうです。すいません 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数学 三角関数 写真の112番(1)の問題です。 cを求める際に解答では角Aと辺b,cで余弦定理を使ってると思いますが、角Bと辺a,cで余弦定理を使って求めることはできないのですか? 角Aと辺b,cの余弦定理だと式が c^2-√2c-1=0となりますが、 角Bと辺a,cの余弦定理だと式が c^2-√6c+1=0になります。 私の計算が違うのでしょうか…。 点を求める 点A(2,2),B(1,3),C(-1,1),D(-1,-1),E(1,-3),F(4,-2),P(m,n)があります。角APB、角CPD、角EPFが等しくなるような点P(m,n)を求める問題です。答えは(1,1)とわかっているのですが、解答までの過程がわかりません。どなたか教えていただけないでしょうか? 私の考えでは、それぞれの角が等しいので、余弦定理を使って cosAPB=cosCPD=cosEPDで解こうと思ったのですが、計算が 複雑になってしまうので、いきずまっています。 三角比(長さと角度を求める) (問題) △ABCにおいて、A=45°、b=3+√3、c=√6の時、a、B、Cを求めよ。 答えは、aは2√3、Bは105°、Cは30°です。 三角比の余弦定理、2辺と間の角が分かるので、a2=b2+c2-2bc cosAを試してみましたが、解答に辿り着きません。bの3+√3が曲者?私の視点が違っているのでしょうか? どの公式を使用してどのように計算していけば、もとめられるのでしょうか。ちなみに数学は全部苦手です。そんな私に超解りやすく解説していただけませんでしょうか。宜しくお願い致します。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 数学(正弦定理・余弦定理)の問題です。 数学(正弦定理・余弦定理)の問題です。 自分で解いてみた問題なのですが、 間違っていたら教えていただきたいです。 1、b=4√3、B=60°のとき、外接円の半径Rを求めよ。 正弦定理・半径R=4 2、A=135°、外接円の半径R=6のとき、長さaを求めよ。 正弦定理・a=6 3、a=2√2、A=45°、C=120°のとき長さcを求めよ。 正弦定理・c=2√3 4、a=3、b=3√2、B=45°のとき、角Aを求めよ。 正弦定理・A=30° 5、a=2、c=3、B=60°のとき、長さbを求めよ。 余弦定理・b=√7 6、b=2、c=3√3、A=150°のとき、長さaを求めよ。 余弦定理・a=7 7、a=8、 b=5、c=7のとき角Cを求めよ。 余弦定理・C=60° 8、a=8、b=13、c=7のとき、角Bを求めよ。 余弦定理・B=120° ここからが分からない問題です。 解き方など教えて下さると嬉しいです。 9、△ABCにおいて、次のものを求めよ。 (1)b=6、A=70°、C=80°のとき外接円の半径Rを求めよ。 (2)b=Rのとき、角Bを求めよ。 (3)a=10、B=60°、C=75°のとき、bを求めよ。 10、△ABCにおいて、a=10、B=60°、C=75°のとき、cを求めよ。 ただし、sin75°=√6+√2/4とする。 11、△ABCにおいて、a=7、b=5、A=120°のとき、長さcを求めよ。 12、△ABCにおいて、b=√2、c=√3-1、A=135°のとき、次の問に答えよ。 (1)長さaを求めよ。 (2)角Bを求めよ。 (3)角Cを求めよ。 部分的でもいいので、回答おねがいします。 正弦定理と余弦定理で答が違う? 三角形の残りの角と辺の長さを求めよという問題で、余弦定理を用いると答が一つなのに、正弦定理も用いて解くと答が二つになってしまうことがあります。 例えば、 a=2,b=√6,c=-1+√3 で、最初に余弦定理からA=45°と出し、その後、正弦定理からB=60°、120°となるのですが、余弦定理だとB=120°となります。だけれど、問題の答はA=45°,B=120°,C=15°です。 どうすれば良いんでしょう? テスト近いので少し焦ってます。よろしくお願いします。 三辺の長さから角度を求めたい(3回目の三角形の質問・・・) こんにちは。 以前、三角形についての質問をさせて頂き、三角形の3点を移動させられるようになりました。 そこで、辺の長さの求め方も教えて頂きました。 今回の質問は「三辺の長さから角度を求める方法を教えて欲しい」というものです。 「辺の長さから角度」と思いつき、余弦定理を思い出したのですが、元々うろ覚えだった為に実装する事が出来ないで居ます・・・。 分かる方、教えていただけませんか? 三角形ABCの3辺をそれぞれabcとして余弦定理に当てはめると cosA = (b*b)+(c*c)-(a*a) / (2*b*c) というようにして求められると思ったのですが・・・。 三角形の辺と角 正弦、余弦 こんにちは。数Iの正弦定理、余弦定理の問題です。 a=√2、B=45°、C=105° の三角形ABCの残りの辺の長さと角の大きさを求めなさい。 A=30°、b=2 これらはちゃんとできました。 でも、cの計算をするとき、疑問があります。 bについての余弦定理で解くと、 2^2=(√2)^2+c^2-2×√2×c×cos45° 4=2+c^2-2√2c×1/√2 c^2-2c-2=0 解の公式より、c=1±√3 c>0より、c=1+√3 になります。 答えはこれで合っているのですが、 aについての余弦定理でも出せるのではないか、と思いました。 (√2)^2=2^2+c^2-2×2×c×cos30° 2=4+c^2-4c×√3/2 c^2-2√3c+2=0 解の公式より、c=√3±1 でもこれだと、bについての余弦定理で解いた答えと違います。 どういうことでしょうか? 教えてください。 空間座標の角度の求め方 空間座標内の3点A(a1,a2,a3),B(b1,b2,b3),C(c1,c2,c3)で定義される三角形の∠BACを求めたいのですが、どのような方法があるでしょうか。できれば、AからBへ向かう辺を角度ゼロとして、三点の座標を入力するだけで(ベクトルの正規化等を用いず)∠BACを0度~360度の値(ラジアンでもいいです)で返すような式が欲しいです。 よろしくお願いします。 三角形の角度と長さから数式の値を得る問題 三角形ABCがありAの対辺をa、Bの対辺をb、Cの対辺をcとする。 (1)(cosA)^2+(cosB)^2+(cosC)^2+2cosAcosBcosC の値を求めよ (2)a^2(b+c-a)+b^2(c+a-b)+c^2(a+b-c)と3abcの大小関係を調べよ この問題にとりくんでいます。 (1)ではA+B+C=πということを使いながらいろいろな公式を使って変形したのですが目標がよくわからず求められませんでした。 (2)は左の式が余弦定理に出てくる部分(b+c-a)があるので余弦定理を利用しそうなのですが大小比較をどのようにするのかがわかりません。 考える上でのヒントでかまいませんので回答よろしくお願いします 正弦定理・余弦定理が分からなくて、困っています 正弦定理・余弦定理の応用の問題で △ABCにおいて、A=135度,b=√3-1,c=√2のとき、 残りの辺と角の大きさを求める問題が、 a=2までは分かったんですが、sinCを求めようと 2/sin135=√2/sinC としたのですが、角度が出せない答えにしかなりません。 何が間違っているのでしょうか??教えてほしいです… 余弦定理 △ABCにおいて、次の問いに答えよ。 a=6、b=3√2、A=45°、B=30°のとき、cを求めよ。 という問題でcos30°を余弦定理で用いたのですが、解答(c=3+3√3)と答えが合いません。 なぜでしょうか?解答お願いします。 数IAの問題 正弦定理 余弦定理 下記の問題ですが、正弦定理、余弦定理をつかえば解けると思うのですが、 正しい回答が自分では導きだせません。。。 解答方法をどなたか教えてください。 問題: △ABCにおいて、b=12、c=4√2、B=60°、C=45°のとき、 aの値を求めなさい。 なお、回答は8√2になるそうです。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 数一 角の求め方 こんばんわ、ちんぷんかんぷんな問題なのでアドバイスお願いしますm(_)m Q、a=√6、b=√2、A=120°のとき、角Cの大きさを求めてください。 余弦定理が使えると思ったんですが・・・?? すいません、アドバイスお願いします。 計算途中、複雑な値になる三角比の問題 ΔABCにおいて, a=3√2 , b=2√3 , c=3+√3のとき3つの角A,B,Cを求めよ。 という問題なのですが、余弦定理で計算している息詰まってしまいます。(僕が計算下手なだけかもしれませんが)この場合どう計算すれば(解けば)よいのでしょうか? 平行四辺形の角度 中3の問題で、平行四辺形(反時計回りに)ABCD(AとC、BとDは対角)において、対角線の交点をEとすると、∠EBC15°∠ECB30°のとき∠BACは何度?と言う問題で、平行線の同位角、錯覚を利用して考えましたが、∠ABEをXとおくと、180=∠BAC+X+45という式しかできません。よければアドバイスをいただきたいです。よろしくお願いします。 二等辺三角形においての余弦定理教えてください!! 角B=角C=30度の二等辺三角形ABCにおいて BC=2ABcos30° と問題の解答はなっています。 で自分なりに余弦定理を使ってこの式を導こうとしました。 すると BC=2AB√cos(180°-2x30°) =2AB√cos(120°) となりました。 どうやって √cos(120°)=cos30° になってるんですか?? そもそも僕の式の導き方まちがってるんでしょうか?? わかるかた教えてください!! ベクトルの問題です とある大学の過去問をやっているのですが、一問だけいまいち解らない部分があります、 (問題)空間内の4点O,A,B,Cに対して→OA=→a,→OB=→b,→OC=→cとおく。 |→a|=2,|→b|=3,|→c|=4,→a・→b=2,→b・→c=11,→c・→a=4をみたしているとする。 (1)|→AB|=(ア) |→AC|=(イ√ウ) ∠BAC=(エ/オ)πである … この、∠BACを求める問題なのですが、いまいちやり方がわかりません。 最初、内積を利用して(→a・→b=|→a||→b|cosθ)解く問題だと思ったのですが、→AB・→ACの値が出てこず、挫折してしまいました。 最終的には、CBの長さを調べてから余弦定理を使って解いたのですが、 この問題以降もベクトルの性質を利用した問題が続いていて、この問題だけベクトルを使わない解き方をするとは思えません。 正しい答え方はどのような解き方をするのでしょうか。やはりベクトルを使って解く問題なのでしょうか。教えてください ちなみに、ア=3,イ=2,ウ=3です 三角比の問題です。 三角比の問題です。 問題:a=√2 b=√2+√6 c=√3+1のときの△ABCにおいて、角ABCを求めよ。 余弦定理のcosA=b2+c2-a2/2bcというのを使ったのですが、うまくいきません。 できればこの公式を使った計算過程を教えてください。 よろしくお願いします。 高校数学 三角比 「三角形ABCにおいてAB=3、AC=4、角A=120°、角Aの二等分線とBCの交点をDとするとき、ADの長さを求めよ。」って問題があったんですけど、解答に「余弦定理は使えないから面積を使って解け」とありました。確かに余弦定理と二等分線による対辺の比の関係を使うと計算が複雑になって答えにたどり着けませんでした。ですが、なぜ余弦定理が使えないのかわかりません。学校に行ってないもんで、聞ける人がいなくて困っています。どなたか教えてください。 三点の座標から求める三角形の面積 座標平面上の3点A(4,5)B(2,1)C(6,2)を頂点とする三角形ABCにおいて 頂点Aから辺BCにおろした垂線をAHとするとき、三角形ABHの面積を求めよ 自分が思っているやり方としては、 (1)AB、BC,CAの距離を求める (2)余弦定理を使いcosΘ、相互関係の式からsinΘを出す。 (3)S=1/2・二辺・その間のなす角で面積を出す。 (4)S=底辺×高さ×1/2の公式に(3)でだした面積を代入し高さであるAHの値を求める。 ここからどういう風に求めていけばいいのかわかりません。 まず、上の自分の考え方があってるかどうか教えて下さい。それから解説解答をお願いいたします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
出題側のミスでした。ありがとうございます。