ベストアンサー 指数関数の極限です 2012/10/10 23:49 lim(x→∞) 2^x-2^-x/2^x+2^-x lim(x→-∞) 1/3^x+3^-x lim(x→3+0) log1/2(x-3) みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー アウストラロ ピテクス(@ngkdddjkk) ベストアンサー率21% (283/1290) 2012/10/11 01:37 回答No.1 2^x=yとおけば、x→∞でy→∞。 lim(x→∞) 2^x-2^-x/2^x+2^-xはおそらく lim(x→∞) (2^x-2^-x)/(2^x+2^-x)ですよね。 lim(y→∞) (y-1/y)/(y+1/y) = lim(y→∞) (1-1/y^2)/(1+1/y^2) =1 他も、同じように置換すればいい。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) 178-tall ベストアンサー率43% (762/1732) 2012/10/11 12:08 回答No.2 >lim(x→∞) 2^x-2^-x/2^x+2^-x … 式の意味? やや不可解。 シチュエーションからみるに、 {2^x - (1/2^x) }/{2^x + (1/2^x) } なのでしょうか…。 このままで目算だと? (1/2^x) → 0 らしいから、→ 1 式整形してみても、 {2^x - (1/2^x) }/{2^x + (1/2^x) } = {2^(2x) - 1 }/{2^(2x) + 1 } となって、 → 1 。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 指数・対数関数の極限 a>1のときlim[x→-∞]a^x=0 0<a<1のときlim[x→∞]a^x=0 a>1のときlim[x→∞]log_ax=∞、lim[x→+0]log_ax=∞ 教科書をみても分かりません。 それぞれどういうことか説明してください。 指数関数の極限と不定形の極限の問題 極限の問題で (1)lim{(logx+log(sin)(2/x)} x→∞ logの底は2 の問題で lim(log){x・sin(2/x)} とまとめてみたのですが、そのあとの計算の解き方のアドバイスか最終的な答えを教えてください。 あと (2)lim(x-sinx)/x^3 x→0 の問題はははじめから手のつけ方がわかりません… どう考えればよいのでしょうか? 回答よろしくお願いします。 対数・指数関数の極限値 (1)lim(h→0)log10(1+h)/h (10は低) (2)lim(h→∞)(1-2/x)^x の極限値を求める問題で、私は苦手なのですが… (1)は解はlog10e、でlim(h→0)loge(1+h)/h=1という極限公式を利用するのだと思いますが,どう変形したらよいのか、ちょっとわかりませんでした。 (2)は解は1/e^2、でlim(h→∞)(1+1/n)^n=eという極限公式を利用するのだと思いますが,どう変形したら解になるのか、できませんでした。 よろしければ、アドバイスを頂きたいです。お願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 指数対数の極限値 lim[x→0]{a^x-1}/xの極限を求めよ なのですが、 a^x-1=tとして lim[t→0]{tlog a}/log(t+1)としました、 解答はlog aということなので、 lim[t→0]t/log(t+1)の部分が1となるらしいのですが、 それがなぜかわかりません、 どなたか教えていただけないでしょうか? お願いします。 対数関数の極限 下の画像において log(1+x) - 1 lim(1/x)log(1+x) = lim(────────) x→0 x→0 x という変形になるのはなぜですか? 極限値 lim[x→0]{log(1+x)+log(1-x)}/x^2 の極限値を求めよ。 lim[x→0]{log(1+x)+log(1-x)}/x^2 =lim[x→0]{log(1-x^2)}/x^2 =lim[x→0]log(1-x^2)^(1/x^2) x^2 を t と置くと =lim[t→0]log(1-t)^(1/t) この式からどうすれば良いかが分かりません。 教えて下さい。 よろしくお願い致します。 極限値の求め方教えてください。 (1)lim_(x→0){x^3/(x-sinx)} (2)lim_(x→+∞){log(x+x^2)/√(1+x^3)} (3)lim_(x→1-0){log(cosx)/log(1-x^2)} 答えがあるのですが解き方がわからないので、解説もお願いしたいです。 指数関数の極限(数学III) lim[x→∞]{3^x - 2^(2x)}の極限を求める問題についてですが、 次の2通りの解答ができてしまいました。 どちらかが間違っているのでしょうか? (1) lim[x→∞]{3^x - 2^(2x)} = lim[x→∞]3^(2x){(1/3)^x - (2/3)^(2x)} = 0 (2) lim[x→∞]{3^x - 2^(2x)} = lim[x→∞]4^x{(3/4)^x - 1} = -∞ 極限値 極限値の問題です。 lim log(2^ⅹ+3^ⅹ)/ⅹ (ⅹ→∞) lim ⅹlog(ⅹ-a)/(ⅹ+a) (ⅹ→+∞) lim (1+1/x)^x (x→+0) 答えはそれぞれ、log3、-2a、1、なのですが、何故そうなるのかが分かりません。 よろしくお願いします。 極限値教えてください。 (1)lim_(x→+∞){log(x+x^2)/√(1+x^3)} (2)lim_(x→1-0){log(cosx)/log(1-x^2)} できれば、解説も教えてください。 極限値の求め方 √(x^2+1)-1 lim ------------- x→-∞ x lim {log10x-log10(x+1)} x→∞ この二つの答えは -1と0なのですが、答えが出ません。 やり方と導き方を教えてください。 三角関数、指数関数の極限の問題(2) 極限の問題で (1)lim(x)sin(1/x) x→0 の問題でlimの後をsin(x)で割り、lim(sinx)/x=1 x→0 の公式をつかって解こうとおもったのですが、その先がわかりません…。 この考え方は間違っているでしょうか? あと、 (2)lim(1+2/x)^x x→∞ の問題はどう考えればよいのでしょうか? どなたか解き方のアドバイスか最終的な回答がわかる方がいらしたら教えてください。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 対数関数の極限 正負が合わない 次の問題の正答は-∞でした。 質問1 私の解き方はどこが間違っているのでしょうか。 質問2 lim[x→∞]logx/x=0を用いた解き方はありますか。 lim[x→1-0]x/logx x=-tとすると、 =lim[t→-1+0]-t/log(-t) =1.0000000000・・・・・・/log(1.0000000000・・・・・・) =1.0000000000・・・・・・/0.0000000000・・・・・・ =∞ 高校生向けのご教授をお願いします。 極限 lim log ( 1 + sinx ) lim log ( 1 + sinx ) sinx --------- = ----------- ・ --- x → 0 x x → 0 sinx x = 1 × 1 = 1 これの sin / x はなぜ 1 になるんですか? 教えてください。 いろいろな極限値 次の極限値を求めよ。 (1)lim(X→+∞)(π/2 -tan^-1 X)^1/x (2)lim(X→+0) Xlog(sinX) (3)lim(X→+2) {log(h+1)-log3}/(h-2) (4)lim(X→+0) (Xtan^-1・1/X) (5)lim(X→+0) (X-1)/(cos^-1・X)^2 (6)lim x→0 (1-cosX)/X (7)lim X→+0 (1+X)^1/X (8)lim X→0 (tan^-1)・1/X^2 (9)lim X→0 (Xtan^-1)・1/X^2 (10)lim h→0 (e^5h - e^2h)/h (11)lim n→∞ 1/n(1/√(n+1)+ 1/√n+2 )+1/√2n) (12)lim x→+0 √{(x+3)(5x-1)}/(x+3) (13) lim x→-0 √{(x+3)(5x-1)}/(x+3) よろしくお願いします。 三角関数、指数関数の極限の問題 極限の問題で (1)lim(1+cosπx)/(x-1)^2 x→1 の問題で、 1-x=t と置換し、-t=x-1 となり lim(1+cosπ(-t+1)/t^2 となるというところまで考えたのですが、その後がわかりません…。 あと、 (2)lim(1)/1+(2)^1/x x→-0 の問題は(2)^1/xで分母分子を割るのでしょうか? 導き方と最終的な答えがわかる方いらしたら教えてください 極限 証明 極限 証明 lim[x→∞](1+(1/x))^x=eの証明はどのようにすれば良いでしょうか? [証明] (logx)'=1/x より,x=1における微分係数は1である。 したがって,微分係数の定義式から lim[h→0](log(1+h)-log1)/h=1 左辺を変形して lim[h→0](1/h)・(log(1+h))=lim[h→0]log(1+h)^(1/h)=1 また、 1/h=x すなわち h=1/x とおくと,x→±∞のときh→0であるから lim[x→∞](1+1/x)^x =lim[x→-∞](1+1/x)^x =lim[h→0](1+h)^1/h=e また、以下が理解できません・・・ lim[x→∞](1+1/x)^x=lim[x→-∞](1+1/x)^xはなぜ等しいのでしょうか? そして、lim[h→0](1+h)^1/h=eとしている理由がわかりません。なぜいきなりeが出てくる? logはどこにいったのでしょうか? 極限値教えてください。 (1)lim_(x→0)(1-cosx)/tan^(2)x (2)lim_(x→0){(1+x)^(a)-1}/x(a:定数) (3)lim_(x→0){log_(2)(1+x)}/x 解説と答えをお願いします。 関数の極限 f(x)=(x^2-a)/x-1のとき、lim x→1 f(x)が収束するように、定数aの値を定めよ。 lim x→1 f(x)=kとすると lim x→1 (x^2-a)=lim x→1 ア・(x^2-a)/x-1 =イ・k=0 よって lim x→1 (x^2-a)=ウ=0 ゆえに a=1 アからウまで教えて下さいm(__)m 極限 問題 極限 問題 lim[x→∞](logx)/(√x) x=t^4とおくと、x→∞のときt→∞である。 lim[x→∞](logt^4)/(√t^4)=lim[x→∞](4logt)/(t^2) =lim[x→∞](4/t)・(log/t) lim[x→∞]logx/x=0より、 =lim[x→∞](4/t)・(log/t)=0 答えは合っているでしょうか? また、(4logt)/(t^2)=(4/t)・(log/t)としたのですが、 4logtは4×logtと分けても問題ないですよね? 以上、ご回答よろしくお願い致します。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など