締切済み 極限値教えてください。 2012/02/10 22:21 (1)lim_(x→+∞){log(x+x^2)/√(1+x^3)} (2)lim_(x→1-0){log(cosx)/log(1-x^2)} できれば、解説も教えてください。 みんなの回答 (2) 専門家の回答 みんなの回答 info22_ ベストアンサー率67% (2650/3922) 2012/02/11 03:23 回答No.2 (2) >lim_(x→1-0){log(cosx)/log(1-x^2)} =0 「lim_(x→0)」の間違いでは? 通報する ありがとう 0 広告を見て他の回答を表示する(1) Tacosan ベストアンサー率23% (3656/15482) 2012/02/11 00:15 回答No.1 なんで同じ問題が出てくるんだろう.... どこに解説が必要ですか? 参考URL: http://okwave.jp/qa/q7282634.html 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 極限値の求め方教えてください。 (1)lim_(x→0){x^3/(x-sinx)} (2)lim_(x→+∞){log(x+x^2)/√(1+x^3)} (3)lim_(x→1-0){log(cosx)/log(1-x^2)} 答えがあるのですが解き方がわからないので、解説もお願いしたいです。 極限値教えてください。 (1)lim_(x→0)(1-cosx)/tan^(2)x (2)lim_(x→0){(1+x)^(a)-1}/x(a:定数) (3)lim_(x→0){log_(2)(1+x)}/x 解説と答えをお願いします。 極限値について 極限値についておしえてください。 (1)lim(n→∞)(√(n^2+n+1)-n) =lim((n^2+n+1)-n^2)/√(n^2+n+1)+n) =lim n+1/(√(n^2+n+1)+n) ここまでしかわかりません。 (2)lim(x→0) tanx-sinx/x^3 tanx-sinx=(sin/cosx)-sinx =(sinx-sinx cosx)/cosx =(sinx(1-cosx))/cosx より (tanx-sinx)/x^3 =(sinx(1-cosx))/x^3(cosx) =(1/cosx)・(sinx/x)・(1-cosx)/x^2 ここまでしかわかりません (3)lim(x→∞) x{log(2x+1)-log2x} =xlog(2x+1/2x) =log(1+(1/2x)^2 ここまでしかわかりません (4) lim(x→1) [-x^2+2x+2] ([ ]はガウス記号) ガウス記号についてはよくわからないのですが、 ガウス記号を考えないでとくと -x^2+2x+2 =-((x-1)^2)+3 ここまでしかわかりません ご親切におしえてください おねがいします 極限値 1.lim(x→0)tanx/x 2.lim(x→0)(1-cosx)/x^2 3.lim(x→0){1-cos(1-cosx)}/x^4 1.lim(x→0)cosx*sinx/x=1 2.lim(x→0)(sinx/x)^2*1/(1+cosx)=1/2 で合っているでしょうか? あと3がわかりません。どなたかアドバイスをお願いします。 極限値 1.lim(x→0)(1-cosx)/x^2 2.lim(x→0){1-cos(1-cosx)}/x^4 1.lim(x→0)(sinx/x)^2*1/(1+cosx)=1/2 これを用いて2を解きたいのですが、どのようにすればいいのかわかりません。 どなたか教えてください。 極限です。 (1)lim(n→∞)3^(n-1)-4^(n+1)/2^(2n+3)+3^(n+2) (2)lim(n→∞)(√(x^2+3x)+x) (3)lim(x→1)(1/(x^2+x-2)-1/2x^2-x-1) (4)lim(x→3+0)9-x^2/√(3-x)^2 (5)lim(x→0)(1-cosx)sinx/x^3 この極限の問題が分かりません。 どなたか解説よろしくお願いいたします。 極限値は?? [問] (1) lim_x→+∞ x*log{(x-a)/(x+a)} (2) lim_x→0 (cosx)^(1/x^2) 解 (1)-2a (2)e^(-1/2) ↑このようになるみたいなんですが、 自分もロピタルの定理を使って頑張ってみました・・・・。 が、結局どんなに考えても解けませんでした。 なにか、以外に簡単に解けそうで怖いですが、ぜひよろしくお願いします。 有限の極限値 lim[x→0][{log(cosx)+√(1+x^2)-1}/x^n] が0以外の有限の極限値を持つように自然数nを定め、その時の極限値を求めよ。 という問題です。 私は、√(1+x^2)をマクローリン展開し、 √(1+x^2)=1+(x^2)/2-(x^4)/8+0(x^6) (0(x)はランダウの記号) としてから、 lim[x→0][{log(cosx)+√(1+x^2)-1}/x^n] =lim[x→0]{-tanx/nx^(n-1)}+lim[x→0][{1+(x^2)/2-(x^4)/8+0(x^6)-1}/x^n] (ロピタルの定理を使いました) n=2のとき =-1/2+1/2 =0 と、題意にそぐわない結果となってしまいました。 どなたか、正答わかるお願いします。 極限値 1.lim(x→0)(1-cosx)/x^2 2.lim(x→0){1-cos(1-cosx)}/x^4 1. lim(x→0)(sinx/x)^2*1/(1+cosx)=1/2 2. x → 0 で 1-cos x → 0. 1-cos x = y とおくとx → 0 のとき y → 0 だから (与式)=0 このような解き方で合っているのでしょうか? 間違っていたら教えてください。よろしくお願いします。 いろいろな極限値 次の極限値を求めよ。 (1)lim(X→+∞)(π/2 -tan^-1 X)^1/x (2)lim(X→+0) Xlog(sinX) (3)lim(X→+2) {log(h+1)-log3}/(h-2) (4)lim(X→+0) (Xtan^-1・1/X) (5)lim(X→+0) (X-1)/(cos^-1・X)^2 (6)lim x→0 (1-cosX)/X (7)lim X→+0 (1+X)^1/X (8)lim X→0 (tan^-1)・1/X^2 (9)lim X→0 (Xtan^-1)・1/X^2 (10)lim h→0 (e^5h - e^2h)/h (11)lim n→∞ 1/n(1/√(n+1)+ 1/√n+2 )+1/√2n) (12)lim x→+0 √{(x+3)(5x-1)}/(x+3) (13) lim x→-0 √{(x+3)(5x-1)}/(x+3) よろしくお願いします。 微分係数の定義を用いた極限 文字の書きかえがわからないので質問します。問題は、 lim(x→0){e^(x^2)-1}/{1-cosx}・・・(1)の極限を求めよ。というものです。 解答では、{e^(x^2)-1}/{1-cosx}=(1+cosx){{e^(x^2)-1}/1-cos^2x} =(1+cosx){e^(x^2)-1}/{sin^2x}=(1+cosx)(x^2/sin^2x){{e^(x^2)-1}/x^2}として、 (1)=lim(x→0)(1+cosx)(x/sinx)^2{{e^(x^2)-1}/x^2}=2*1^2*1=2と書いてあります。 分からない点は、lim(x→0){{e^(x^2)-1}/x^2}=1です。lim(x→0){(e^x-1)/x}=1・・・(2)は問題の直前に証明がのっていました。(2)においてxをx^2に書きかえたら、 lim(x→0){{e^(x^2)-1}/x^2}=1になるという説明は納得できそうでできません。 数学IIの教科書にも余弦の2倍角の公式より、sin^2α=(1-cos2α)/2 ここでαをα/2に書きかえて、半角の公式を導ています。しかし、 y=log10(1-3x)を微分せよで、解答はy'=(1-3x)'/{(1-3x)log10}=3/{(3x-1)log10}になります。文字を書きかえるだけなら、y'=1/{(1-3x)log10}になると思います。どういう基準で文字を書きかえて公式が成り立つ、成り立たないを判断するのでしょう?どなたか教えてください。おねがいします。 極限の問題 (1) lim(x→0) (1-cosx)/x*tanx (2) lim(x→0) (cosx)^(1/2x) の二問が分かりません。どなたかよろしくお願いします。 関数の極限 lim(x→-3)1/(x+3)^2 ・・・(1)の極限とlim(x→∞)cosx/x・・・(2)の極限値、の求め方がわからないので、質問します。 (1)の解説は、lim(x→-3)(x+3)=0 ,1/(x+3)^2>0 から極限∞と書いてあります。分母が限りなく0に近い正の値になるので、∞と考えて良いのでしょうか、しかし他の極限を求める問題では(関数にいろんな計算した後)xが近づく数を関数に代入したりして求めているので、自分の考えも間違っていると思います。お返事ください。 (2)の別解では、-1≦cosx≦1であるから x>0のとき -1/x≦cosx/x≦1/xと続きます。xは負の値から∞に近づくかもしれないのに、x>0のときに限るのは∞(限りなく大きい正の数)に、近づいた後のときだけを考えているのでしょうか?x>0にしていい理由を教えてくださいお願いします。 極限値 問題 極限値 問題 lim[x→0](sin^2x・cosx) /(1-cosx) 1+cosxを分子と分母に掛けて、分母が0を解消して lim[x→0]cosx+cos^2x=2 答えは合っていますでしょうか? ご回答よろしくお願い致します。 極限の問題 極限の問題 たびたびすみません。解き方が分からない問題が他にも出てしまいました。 数IIIについてはまるっきり初心者です、ご迷惑掛けてすみません!! 公式を使ったりするのだと思いますが、どう変形すればよいのか困っています。 どれかひとつでも構いませんので、どなたか数学のできる方、お願いします!! (1)lim[x→∞](xe^x)/(e^(2x)+1) (2)lim[x→∞]{1-(log2/x)}^x (3)lim[x→+0]|x|/√(a+x)-√(a-x) (4)lim[x→-0]x/√(1-cosx) (5)lim cos(1/x) 【[x→∞]と[x→+0]の場合】 極限 lim[x→0](e^x-cosx)/x どのようにすればよいのでしょうか? 教えていただけないでしょうか? よろしくお願いいたします。 極限値 lim[x→0]{log(1+x)+log(1-x)}/x^2 の極限値を求めよ。 lim[x→0]{log(1+x)+log(1-x)}/x^2 =lim[x→0]{log(1-x^2)}/x^2 =lim[x→0]log(1-x^2)^(1/x^2) x^2 を t と置くと =lim[t→0]log(1-t)^(1/t) この式からどうすれば良いかが分かりません。 教えて下さい。 よろしくお願い致します。 極限 lim(x→∞) (x-sinx)/x という問題なのですが、まずロピタルの定理を用い、lim(x→∞) (1-cosx) となりました。 解答には1と書いてあったのですが、cos∞ がどうなるのかわかりません。どのように扱えば良いのでしょうか。 極限値を求める問題 問)次の極限値を求めよ。 lim[x→0](sin3x)^2/(1-cosx) 公式 lim[x→0]x^2/(1-cosx)=2 を使おうとしていろいろ試行錯誤してみましたが、 どうしても分かりません。 どのように導けばよいのでしょうか? よろしくお願い致します。 この極限値 lim(x→∞)tanx/xの値をあるソフトで計算させたら 0と出ました。 lim(x→∞)sinx/x=0はわかり、 lim(x→∞)1/cosxが振動するのもわかるので、 感覚的には lim(x→∞)tanx/xは振動するような気がするのですが。 どなたかすっきり説明できる方はいらっしゃいませんか。 注目のQ&A 「前置詞」が入った曲といえば? 新幹線で駅弁食べますか? ポテチを毎日3袋ずつ食べています。 優しいモラハラの見抜き方ってあるのか モテる女性の特徴は? 口蓋裂と結婚 らくになりたい 喪女の恋愛、結婚 炭酸水の使い道は キリスト教やユダヤ教は、人殺しは地獄行きですか? カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど