ベストアンサー 微分方程式 変数分離形 2012/09/04 11:16 以下の問題がよくわからないので、わかる方ご教示お願いします。 (1)x(dy/dx)=tan(y) (2)x(dy/dx)+y=1 みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー alice_44 ベストアンサー率44% (2109/4759) 2012/09/04 14:55 回答No.2 (1) {(cos y)/(sin y)}(dy/dx) = 1/x (2) {1/(1-y)}(dy/dx) = 1/x 両辺を x で積分すれ。 (1)左辺が未だ?なら、z = sin y とすれ。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) Tacosan ベストアンサー率23% (3656/15482) 2012/09/04 11:20 回答No.1 「問題がよくわからない」っていわれても, ねぇ.... 例えば (1) は「x による y の導関数に x を掛けると y の正接の値に等しいとしたときに, x と y の (y の微分や積分を含まないような) 関係式を導け」っていってるわけですよ. 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 微分方程式・変数分離形 (3x+2y+1)dx-(9x+6y+4)dy=0 という問題なのですが、u=9x+6y+4とおいて、 u'=9+6y' 3x+2y+1=1/3*(9x+6y)+1=1/3*(u-1) y'=(u'-9)/6=(u-1)/(3u)と変形して変数分離形にしようとしたのですが、 u/(11u-2)*u'=1 を積分しようとしてもできません。この形が悪いのでしょうか?それとも積分できるのでしょうか?どなたかご指摘お願いします。 変数分離形微分方程式の導入における式の展開について 変数分離形微分方程式の導入において、参考書に次のような式の展開がありました。 y=f(x)において、 Δy/Δx≒dy/dx Δy≒dy/dx・Δx dy=dy/dx・Δx(近似式)・・・(1) ここで、y=x とすると、 dx=dx/dx・Δx より dx=Δx・・・(2) (2)を(1)に代入すると、 dy=dy/dx・dx 上の式で、y=x としていますが、なぜなのでしょうか? y=x は y=f(x) の関数の1つに過ぎないと思うのです。一般化しているように思えないのですが・・・ 宜しくお願い致します。 変数分離型の微分方程式 次の微分方程式を、変数分離型として解け。 dy/dx = x*exp(-(x+y)) -1 ただし、初期条件x=y=0 とする。 うまく変数分離型にもっていくためのやり方がわかりません。 どなたか解説よろしくお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 全微分方程式の変数分離 斉次全微分方程式 P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=0 をzが変数分離された式 P'(u,v)du+Q'(u,v)dv+dz/z=0 となることを示したいのですが、 まずx=uz,y=vzと置くと dx/dz=z*du/dz+u dy/dz=z*dv/dz+v となりますよね。 これを代入して色々やっているのですが、 どうやっても目的の式にもっていくことが出来ません…。 どなたかやりかただけでもお願いします。 微分方程式 (d^2y/dx^2)+2(dy/dx)+y=e^(-x) 条件:x=0のとき、y=0, dy/dx=0 上の微分方程式がどうしても分かりません。 すごく簡単な問題だと思いますが、悩んでいます。 分かる方、教えていただきたいですm(_ _)m 微分方程式の解き方について d^2y/dx^2 + 4dy/dx + 3y = 3x^2 + 2x 初期値:x=0のときy=1,dy/dx=1 の解き方がよくわかりません。解き方が分かる方、どうか助けて下さい! 非線形微分方程式の問題について 微分方程式の問題について質問させていただきます。 [問題] 以下の微分方程式を解け。 dy/dx(dy/dx-y)=x(x-y) ただし、x=0のときy=0とする。 非線形なのでp=dy/dxとおいて、解いたのですが、解として (1) y = 1 + x - e^-x (2) y = (1/2)x^2 の二つが出てきました。しかし、(1)の方は微分して与式に代入しても、 式を満たさなかったのでですが、これらの解は合っているでしょうか? おそらく、(1)は間違っていると思うのですが、p=dy/dxとおいて解くと、なぜかこのような解が出てきてしまいました。 回答よろしくお願いいたします。 微分方程式 微分方程式の問題 (xy-x+y-1)dx-(xy+x-y-1)dy=0 dy/dx=(xy-x+y-1)/(xy+x-y-1) =(y-1+(y/x)-(1/x))/(y+1-(y/x)-(1/x)) t=y/xとして y'=t+xt' dy/dx=(tx-1+t-(1/x))/(tx+1-t-(1/x)) で途中までやったのですが この問題が解けません。ヒントください 微分方程式について dy/dx=√yの解でx=0のときy=0を満たすものが無数に存在することを示せ。 …という問題についてですが、dy/dx=√yをいろいろと変形させたりしてはいるのですが無数に存在することの示し方がわかりません。 誰か解いてみていただけませんか? 常微分方程式の解き方 以下の常微分方程式をどのように解けばいいか教えてください。 (dy/dx)^2 +(x −3y −1)dy/dx + 2y^2 −2xy −x + y=0 常微分方程式の問題 常微分方程式の問題でいくつか解けなかったところがあるので教えていただきたいです。 この章で扱っているのは 変数分離系・同時系・線形1階微分方程式・完全微分形・線形2階微分方程式(同次形)・線形2階微分方程式(非同次形) を扱っていました。 その内、一般解を求める以下の問題 (1)dy/dx=xe^-y (2)x(dy/dx)-y=1 (3)(2y-x^2)dx+(2x-y^2)dy=0 と 与えられた条件をそれぞれ満たす微分方程式の解を求める以下の問題 (1)dy/dx=y/x (x=1のときY-2) (5)y''+5y'+6y=0 (x=0のときy=0、y'=1) の問題が解くことができませんでした。 どなたか解法をわかりやすく教えていただけないでしょうか? 変数を置換える微分方程式について お世話になります、 以下の考え方で問題がないかご教授願います。 (どうして大学のテキストは解答がついてないのでしょうか、成否の確認ができません…) 問題:y´=y^2/(xy-x^2) 最初は変数分離で一瞬で解けると思ったのですが、分母がネックになりました。 右辺を1変数に置き換えられないか考えて、分子分母に1/(xy)を乗じます。 y^2/(xy-x^2)=(y/x)/(1-x/y) において、 z=(y/x)としてz^(-1)=(x/y),dz/dy=1/xよりdy=x dz ∴ z/(1-z^(-1))=(x・dz)/dx 両辺を逆数化して (1-z^(-1))/z=dx/(x・dz) ∫(1-z^(-1))/z dz=∫1/x dx log|z|+z^(-1)+C=log|x| <Cは積分定数です> つまり、log x=log z+z^(-1)+C log x=log z+log e^z^(-1)+log e^C log x=log{ze^z^(-1)e^C} x=ze^z^(-1)C´ <e^C=C´とする> x=(y/x)e^(x/y)C´ 一応、微分は無くなったので正解となるのでしょうか? お世話になります。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 微分方程式 x(dy)/(dx)+2y=xという微分方程式を解くのですが、これをxでわると (dy)/(dx)+(2y)/(x)=1となるのはわかるのですが、その後、 z=(y)/(x),y=xz・・(1)として (dy)/(dx)=z+x(dz)/(dx)・・(2) となる(1)から(2)への展開のところがわかりません。 (2)の左辺はyをxで微分しているのがわかるのですが、右辺の意味がわかりません。教えて下さい。 同次形微分方程式 次の問題がわかりません。 次の微分方程式を解け。 (1)(x-y)(dy/dx)=2y (2)dy/dx=y/x+sin(y/x) (1)(x-y)(dy/dx)=2y (dy/dx)=2y/(x-y) 右辺の分母分子をxで割る (dy/dx)=2y/x/(1-y/x) y/x=uとするとdy/dx=u+xdu/dxより u+xdu/dx=2u/1-u xdu/dx=2u/1-u -u xdu/dx=u+u^2/1-u (1-u)du/(u+u^2)=dx/x 両辺を積分 の左辺の積分がわかりません。それかもっといい方法あったら 教えてください。 (2)y/x=uとするとdy/dx=u+xdu/dxより u+xdu/dx=u+sinu xdu/dx=sinu du/sinu=dx/x 両辺を積分 の左辺の積分がわかりません。お願いします。 変数分離の規則について 変数分離の規則について 例えば、3y^2(dy/dx)=y^3+xですが、 y^3=α 3y^2=dα/dy より dα/dy・dy/dx=α+x dα/dx=α+x とαとxの式に変換して構わないのでしょうか? ご指導願います。 微分方程式についてです dy/dx = -y の微分方程式で ,x=10tと置いた場合. dx/dt = 10 ∴dt/dx = 1/10 を使って, dy/dx = (dy/dt)(dt/dx) から, -y =(dy/dt)(1/10) ∴dy/dt = -10y とするのはいいのでしょうか. 1次近似なので,x=10t は分割が小さくなっただけのような気がするんですけど. 数学 微分方程式 次の微分方程式を解け。 (1) dy/dx=ay(a≠0) (2) dy/dx=(y-1)/xy (3) (1-x^2)dy/dx=x(y^2+1) という問題が分かりません。解説お願いします。 微分方程式の解き方 1.y" - 2y' + y = x sinxの一般解を求めよ。 この問題で、一つの解の予想の仕方が分かりません。 2.(y^2)*((d^2)y/d(x^2)) = (dy / dx)^3 dy/dx = p、((d^2)y/d(x^2)) = (dp / dy)p とおき、 y^2 * p *(dp /dy)= P^3 y^2 * (dp/dy) = P^2 変数分離をして 1/(p^2) dp = 1/(y^2) dy -(1/p) = -(1/y) + C 1/p = 1/y - C p = y - 1/C p=dy/dx = y + A (A = -1/Cとおく) 1/(y + A) dy = dx log|y + A| = x + B y + A =±e^(B + x) y = Ce^x - A となりましたが 答えはlog|y|=x + C1y + C2です。 間違っているところを指摘していただけるとありがたいです。 教えてください☆(微分方程式) (x+y)y'=2の一般解を求めよという問題が分かりません。左辺にyを集めて右辺にxを集めてy’をdy/dxにして解いてみたんですが、y'が二つ出来てしまってうまくいきません。誰か分かる方教えてください☆ 微分方程式について 下の微分方程式について教えていただきたいです。 dy/dx = G(x, y) ただし、y = f (x)とする。 また、x = xo のとき y = yo = f (xo) 以上をふまえて dy/dx = 1/4 * y において以下の問いに答えよ。 (※1/4 * y は 四分の一 × y のことです。分かりにくくてすみません) (1) x = 0 の時のyの値 (2) x = dx の時のyの値 (3) x = 2dx の時のyの値 (1)は自分で解いてみると答えがC(定数)になってしまい、(2)(3)は解き方すら分かりませんでした。 おそらく、どれも答えは1とか2とか具体的な数字になると思います 数学は苦手なので、お教え下さるとうれしいです。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など