数A
赤玉3個と白玉4個と青玉5個が入った袋から、1個だけ玉を取り出して、色を調べてからもとに戻すことを4回続ける。この時、次の確立を求めよ。
Q、4回目に初めて白玉が出る確率
Q、つぼのなかに赤玉が3個、白玉が2個入っている。この中から1個の玉を取り出し、色を見てもとへ戻し、さらに同じ色の玉を1個加える。続いて1個の玉を取り出し、色を見てその玉および1個の同じ色の玉をつぼの中に加える。3回目にまた1個の玉を取り出す。この時、k回目に赤玉が出るという事象をAkとする(k=1,2,3)。この時、確率P(A1∩A2∩A3)、P(A3)、条件付き確率PA3(A2)をそれぞれ求めよ。
9個の白玉と1個の赤玉の入った袋Aと、8個の白玉と2個の赤玉の入った袋Bがある。コインを振って表が出たらAの袋から玉を1個取り出し、裏が出たらBの袋から玉を1個取り出す。取り出した玉はもとに戻さず、続けて同じようにして玉を取り出す。こうして、2個の玉を取り出すとき、次の確立を求めよ。
Q、1回目に赤玉が出たという条件のもとで、1回目のコインが裏であった確率
Q、nが3以上の奇数であるとき、n3乗-nは24で割り切れることを証明せよ。
分からなかったのでどなたか教えてください。
お礼
わかりました☆ ありがとうございました(´∀`*)