(1)
x/(x^3+1)=x/((x+1)(x^2-x+1))
=-(1/3)/(x+1) + (1/3)(x+1)/(x^2-x+1)
(2)
I=∫x/(x^3+1) dx
=-(1/3)∫1/(x+1) dx +(1/3)∫(x+1)/(x^2-x+1) dx
=-(1/3)ln|x+1| +(1/6)∫(2x-1+3)/(x^2-x+1) dx
=-(1/3)ln|x+1| +(1/6)∫(2x-1)/(x^2-x+1) dx
+(1/2)∫1/(x^2-x+1) dx
=-(1/3)ln|x+1| +(1/6)ln|x^2-x+1|
+(1/2)∫1/((x-(1/2))^2 +(3/4)) dx ...(★)
ただし、ln( )は自然対数。
ここで
I1=∫1/((x-(1/2))^2 +(3/4)) dx
x-(1/2)=t√3/2と変数変換すると
I1=(2/√3)∫1/(t^2 +1) dt
=(2/√3)tan^(-1)(t)+C1
=(2/√3)tan^(-1)((2/√3)(x-(1/2)))+C1
(★)に代入
I=-(1/3)ln|x+1| +(1/6)ln|x^2-x+1| +(√3/3)tan^(-1)((2/√3)(x-(1/2))) + C
=-(1/3)ln|x+1| +(1/6)ln|x^2-x+1| +(√3/3)tan^(-1)((√3/3)(2x-1)) + C
(C=C1/2とおく)
∫[-π/2,π/2] dx/(2+cos(x))
=2∫[0,π/2] dx/(2+cos(x))
= ... (途中計算略)
=(2π/9)√3
I=∫[0,1] dx/√(x^2+1)
x=sinh(t)で置換すると
dx/√(x^2+1)=dtより
I=∫[0,sinh^(-1)(1)] dt=sinh^(-1)(1)=(1/2)(e-(1/e))=(e^2-1)/(2e)
(但し,eはネイピア数,自然対数の底)
お礼
ありがとうございます!