ベストアンサー 関数の極限です。 2012/05/18 14:18 lim[x→+0]1/x=1/+0=∞ lim[x→-0]1/x=1/-0=-∞ これらの等式の、1/+0や1/-0の部分は数学的にタブーですよね? ご回答宜しくお願い致します。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー T2Phage ベストアンサー率100% (1/1) 2012/05/18 15:02 回答No.1 この分母の「+0」や「-0」はあくまで「限りなく0に近い数」 つまり 1/+0=1/0.00000…001≒∞ というわけです なのでタブーではありません 質問者 お礼 2012/05/20 10:18 ご回答ありがとうございます。 では、数学的にタブーではないが、大学入試の答案用紙に書くと、間違いとして取られる可能性が少しでもあると良いということで良いでしょうか。 それとも、大学入試の答案用紙にもバンバン書いてもよいということでしょうか? 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数列・関数の極限について 俗に言う「はさみうちの原理」とその周辺に関して質問があります。 数学IIIの教科書によると, すべての自然数nに対し a_n ≦ b_n ≦ c_nのとき lim{n→∞}a_n = lim{n→∞}c_n = α(定数) ⇒ lim_{n→∞}b_n = α lim{x→∞}f(x) = lim{x→∞}h(x) = α(定数)とする。 十分大きいxに対し,f(x) ≦ g(x) ≦ h(x) ⇒ lim_{x→∞}g(x) = α となっております。 (1)limを登場させる順番がなぜ違うのか? 数列の極限の方ではまず不等式を記し,関数の極限の方ではlimから記しています。 (2)「すべての」と「十分大きい」の部分は数列の極限と関数の極限で異なるか? 数列の極限の方でも「十分大きい自然数nに対し」でもよいような気がするのですが…。 以上、よろしくお願いします。 関数の極限値について lim(x→1) a√(x)+b/x-1=2 この等式が成り立つように定数a,bの値を求めよ。 この問題の解説で、極限値が存在するには lim(x→1) x-1=0ならば分子のlim(x→1) a√(x)+bも0でなければいけないとありました。 これの意味がわかりません。 なぜ極限値が存在するためには分母の極限値が0だと分子の極限も0でなければならないんですか? 関数の極限 こんにちは lim~で表される数学の問題がわかりません(T_T) (1) lim(x→0) cos1/x (2) lim(x→π/2) tanx (2)はsinx/cosxに変換する気がするのですが、それでもその先がわかりません。。。 ご協力お願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 三角関数と極限値の問題 三角関数と極限値の問題 『lim(x→0)xcos1/x の極限値を求めよ』という問題の解説について質問です。 解説は以下のようになっています。 --- 与えられた式の絶対値を、0と|x|ではさむ形の不等式を作り、『はさみうちの原理』を使う。 0≦|cos1/x|≦1 であるから 0≦|xcos1/x|=|x||cos1/x|≦|x| lim(x→0)|x|=0 であるから lim(x→0)|xcos1/x|=0 ゆえに lim(x→0)cos1/x=0(答) --- この中で、 >0≦|cos1/x|≦1 であるから というのは数学の範囲で言うとどの辺りにでてくることなのでしょうか? もしくは何かの公式を変形させたものなのでしょうか? 質問自体が成り立っていなかったらすぐに教えて下さい。ご返答どうぞよろしくおねがいします。 2変数関数の極限 (1) lim((x,y)→0) tan(x^5 + y^6) / (x^4 + y^4) 変形して行くと 1/(cos(x^5+y^6)) * (sin(x^5+y^6))/(x^5+y^6) * (x^5+y^6)/(x^4 + y^4) と3つの部分に分ける事が出来て、1つ目と2つ目は1に収束する事は分かるのですが、 3つ目の部分は分子の方が高次だから早く0になりそうだと予想はつくのですが 数学的な説明方が分かりません。 (2) lim((x,y)→0) (1 + x^2 y^2)^(1/(x^2+y^2)) べき乗の数(右肩の数)が0に向かうので、べき乗される数が発散しなければ1になりそうで、 しかもべき乗される数も1に向かってるので答えは1かなと言う予想はしているのですが、 それをどう数学的に説明すればいいのか分かりません。 以上2問、よろしくお願いします。 極限について、おねがいします。 二つ聞きたいです。よろしくおねがいします。 (1)lim(x)^1/x=0であるのに、なんでlim(n)^1/n=1なんですか? ともにx→正の無限大に発散しnも同様とする。 (2)logx≦x-1はx>0のみでしか成立しない理由はなんでですか?確かにx≦0部分はlogが存在しないけど、不等式の評価はできないんですか? ついでに(3)もお願いします。できれば教えてもらいたいです。 (3)x^1/xの増減とlog1/xの増減が一致するのは微分すればわかりますが解ではlogが増加関数であることより一致するとなっていたのです。なぜ増加関数ならそうなるんですか? 極限の等式の意味についてです。 極限の例えば lim[n→∞]2n=∞ の等式=は 1+1=2 の等式=と全く同じ意味を表すんでしょうか? ご回答宜しくお願い致します。 三角関数の極限 三角関数の極限について質問です。 lim(x→0)sinx/x=1の(x→ー0)のときの証明で、 x→ー0のときは、x=-tとおくと、t→+0だからlim(x→+0)sinx/x=1よりlim(x→-0)sinx/x=lim(t→+0)=sin(-t)/ーt の部分なのですが、なぜlim(x→-0)sinx/x=lim(t→+0)sin(-t)/-tとなるのですか?なぜ(x→-0)から(t→+0)になるのですか?sinx/xからsin(-t)/-tとなるのですか?よくわからないの教ええください。 関数の極限 f(x)=(x^2-a)/x-1のとき、lim x→1 f(x)が収束するように、定数aの値を定めよ。 lim x→1 f(x)=kとすると lim x→1 (x^2-a)=lim x→1 ア・(x^2-a)/x-1 =イ・k=0 よって lim x→1 (x^2-a)=ウ=0 ゆえに a=1 アからウまで教えて下さいm(__)m 極限値と不定形 こんにちは。高校数学2の極限に関する質問です。 参考書の問題です。 Q:次の等式が成り立つように、定数a,bの値を求めよ。 lim{(x^2+ax+b)/(x-2)} =5 x→2 A:x→2のとき 分母→0 極限をもつためには、分子→0でなければならない。 … この問題は4+2a+b=0とし、b=-2aー4と仮定し、 lim{(x^2+ax+b)/(x-2)} =lim(x+a+2)=5 x→2 x→2 とし、2+a+2=5とし、a=1、b=-6 を求めます。 ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー x→2のとき 分母→0 極限をもつためには、分子→0でなければならない。 ここで質問ですが、↑不定形の問題ということですがなぜでしょう(?) よろしくお願いします。 関数の極限値 いつもいつも回答ありがとうございます。 また全然思いつかない問題に出くわしました。 答えがないのでずっと考えていました。 分かる方教えていただけませんか。 lim[x→0]e^(-1/x^2) 直感では0になりそうなのですが、厳密にできますでしょうか。 関数の極限 関数の極限に関しての質問なのですが、 lim[x→0]√2-x - √2+x/xで、 lim[x→0](√2-x - √2+x)(√2-x + √2+x)/x(√2-x + √2+x) =lim[x→0]-2x/x(√2-x + √2+x) =lim[x→0]-2/x(√2-x + √2+x) =-2/2√2 =- √2/2 の問題で、分子の(√2-x - √2+x)(√2-x + √2+x)から-2x、-2xから-2また、分母の√2-x + √2+x)から2√2になるかが分かりません。 分かる方は教えてほしいです。お願いします 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 関数の極限 lim[x→π/3](asinx+bcosx)/(x-π/3)=5 (a bは定数)のとき a=()b=()である という問題で、解答見たんですが、 b=-√3aとなり、 lim[x→π/3](asinx+bcosx)/(x-π/3) =lim[x→π/3]a(sinx-√3cosx)/(x-π/3)になるのは 分かったんですが、次になぜ =lim[x→π/3]2a×sin(x-π/3)/x-π/3になるのかが 分かりません。 よろしくお願いします。 極限の質問です。 画像のような等式が成り立つa,bの値を求めることはできますか? 求められない場合の理由もお教えいただければ嬉しいです。 また、この画像の式をPC上でどのように表せばよいか困っています。 極限lim[x→∞] √(x^2+ax)+bx=3/2で合ってますか? どちらかだけでもご回答いただけると助かります。よろしくお願いします。 3つの変数の極限値 学校で出た宿題の中で、 次の等式が成り立つように、定数a,b,cの値を求めよ。 lim(x→-1){(x^3+ax+b)/(2x^3+3x^2-1)}=c という等式なのですが、分母に-1を代入したら0になりそうなので、分子を0にしようとして、 x^3+ax+b=0 -1-a+b=0 b=a+1 として、 lim(x→-1){(x^3+ax+a+1)/(x+1)^2*(2x-1)} lim(x→-1){{(x+1)(x^2-x+1)+a(x+1)}/{(x+1)^2*(2x-1)}}=c lim(x→-1){(x^2-x+1+a)/{(x+1)(2x-1)}}=c までこぎつけたのですが、変数aとcが残っていて、どうしようもできません。 この問題はどのようにしてとけばいいのでしょうか? どなたかご教授ください。 函数の極限 次の極限を求めよ。 (1) lim[x→±∞]{1+(1/x)}^x (2) lim[x→0](exp(x)-1)/x (3) lim[x→0±]exp(1/x) このときexpは自然対数の底である。 すべて答えは分かっているのですが、それだけ書いても意味がありませんのでお知恵を貸してください。また、授業では数列の極限 {a_n}[n=1~∞] a_n={1+(1/n)}^nのとき e=lim[n→∞]{1+(1/n)}^n と定義したのでそこから導きたいのですがどうすればいいでしょうか?よろしくお願いします。 2変数関数の極限値の求め方 閲覧ありがとうございます。拙い質問で恐縮ですが、よければ回答いただければ幸いです。 lim<(x,y)→(0,0)>[sinx*tany/((sinx)^2+(siny)^2)] よろしくお願い致します。 関数の極限の問題がわかりません 途中過程も教えてくれるとありがたいです。 次の極限値を求めよ (1)lim(x→0)(tanx-sinx)/x^3←できれば二倍角の公式??半角の公式を使ってください。 (2)lim(x→0)sinx°/x 回答よろしくお願いします。 関数の極限 f(x) =lim {x^(2n-1)+ax^2+bx}/{x^(2n)+1} ↑はn→∞ これについて、x=1のとき lim f(x)=lim f(x)=f(1) x→1+0 x→1-0 が成り立っています。つまりf(x)はx=1で連続です。 このとき、上の関係から、 1=a+b=(1+a+b)/2 が成り立つようなのですが、真ん中のa+bがどこからでてきたのか分かりません。 どなたか説明をお願いします。 関数の極限 lim(x→2-0) 1/x-2 はどうして-∞になって、 lim(x→2+0) 1/x-2 は∞となるのでしょうか。 意味的には、-0は左から2に限りなく近づける(左側極限)・・・と理解してます、右はその逆。と理解してますが・・・。 そのままxに2を代入したら∞になってしまいますよね・・・。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ご回答ありがとうございます。 では、数学的にタブーではないが、大学入試の答案用紙に書くと、間違いとして取られる可能性が少しでもあると良いということで良いでしょうか。 それとも、大学入試の答案用紙にもバンバン書いてもよいということでしょうか?