- ベストアンサー
関数の極限
f(x) =lim {x^(2n-1)+ax^2+bx}/{x^(2n)+1} ↑はn→∞ これについて、x=1のとき lim f(x)=lim f(x)=f(1) x→1+0 x→1-0 が成り立っています。つまりf(x)はx=1で連続です。 このとき、上の関係から、 1=a+b=(1+a+b)/2 が成り立つようなのですが、真ん中のa+bがどこからでてきたのか分かりません。 どなたか説明をお願いします。
- みんなの回答 (2)
- 専門家の回答
f(x) =lim {x^(2n-1)+ax^2+bx}/{x^(2n)+1} ↑はn→∞ これについて、x=1のとき lim f(x)=lim f(x)=f(1) x→1+0 x→1-0 が成り立っています。つまりf(x)はx=1で連続です。 このとき、上の関係から、 1=a+b=(1+a+b)/2 が成り立つようなのですが、真ん中のa+bがどこからでてきたのか分かりません。 どなたか説明をお願いします。
お礼
丁寧にありがとうございます! よく分かりました。