ベストアンサー 次の問題の解き方を教えてください3 2012/03/06 16:39 y^2+x^2+x+2y+4 と y=mx が共有点をもつときmの範囲を求めよ またy^2+x^2+x+2y+4 と y=mx が接する時ふたつの接点をP,Qとするとき PQの長さを求めよ みんなの回答 (5) 専門家の回答 質問者が選んだベストアンサー ベストアンサー noname#157574 2012/03/06 19:33 回答No.3 【前者】y=mx を x²+y²+x+2y+4=0 に代入して x の 2 次方程式をつくり,判別式の値が 0 以上になる m の範囲が答え 【後者】前者でできた 2 次方程式から x を求め,それぞれについて y=mx に代入する。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (4) Tacosan ベストアンサー率23% (3656/15482) 2012/03/07 02:02 回答No.5 「虚な円」って使っていいんでしたっけ? 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 alice_44 ベストアンサー率44% (2109/4759) 2012/03/06 23:33 回答No.4 > かもしれません > とりあえず、円の方程式と 円の方程式を復習して、その円の中心と半径が 求められるようになれば、方程式というより 図形の問題として処理できるよ。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 Tacosan ベストアンサー率23% (3656/15482) 2012/03/06 18:00 回答No.2 せめて問題くらいは正確に書けないものかなぁ.... 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 Parinne ベストアンサー率7% (14/187) 2012/03/06 17:12 回答No.1 y^2+x^2+x+2y+4・・・、これって関数じゃなくて文字式だよな。 +のどこかが=なのだろうが、そうだとしても教科書レベルです。 この時期だと、受験でのカンニングだと思われますので、教科書を読めとしか回答できません。 実際、教科書レベルですし。 質問者 補足 2012/03/06 17:29 y^2+x^2+x+2y+4=0 かもしれません とりあえず円の方程式との交点の奴です 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数学の問題です。 数学です。 よろしくお願いします。 直線y=mxが放物線y=x^2+1と相異なる2点P,Qで交わるとする。 mがこの条件を満たしながら変化するとき、mのとりうる値の範囲を求めよ。 また、このとき 、線分PQの中点Mの軌跡を求めよ。 次の問題を問いてください、お願いします! 二次関数y=x二乗-mx+m+3のグラフについて、次の問に答えよ。 (1) x軸と異なる2点で交わるとき、定数mの値の範囲を求めよ (2) x軸と共有点をもたないとき、定数mの値の範囲を求めよ 次の問題を解いてください!お願いします! 二次関数y=x二乗-mx+m+3のグラフについて、次の問に答えよ。 (1) x軸と異なる2点で交わるとき、定数mの値の範囲を求めよ (2) x軸と共有点をもたないとき、定数mの値の範囲を求めよ 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 数学Bの問題・・・ 数学の問題がありまして、その問題についてなるべく正解に近く、詳しい回答を知りたいのでお願いします。 座標平面上に、 円(x-2√3)2+(y-4)2=4・・・(1)と、 直線y=mx+2 ・・・(2)がある。 ただし、mは定数とする。 ※半角の2は二乗のことです。 I 円(1)と直線(2)が接するとき、mの値と、そのときの接点の座標を求めよ。 II 円(1)と直線(2)が異なる2点P,Qで交わるとき、mのとりうる値の範囲を求めよ。また、このとき線分PQの中点Mの座標をmを用いて表せ。 III Iで求めた二つの接点をA、Bとする。IIの点Mに対して、△MABの面積が√3であるとき、mの値を求めよ。 数学の問題 数学の問題 原点O(0,0)を中心とする半径1の円に、円外の点P(x0,y0)から2本の接線を引く。 (1)2つの接点の中点をQとするとき、点Qの座標(x1,y1)を点Pの座標(x0,y0)を用いて表せ。 また、OP*OQ=1であることを示せ。 という問題です。 接点をA,Bとすると、AとBを結んだ線分は点Pの極線だから、その方程式は x0x + y0y = 1 というのは分かります。 PA=PB だから三角形PABは二等辺三角形 よって、点Pから点Qに線を引くと、それらは垂直に交わる。 つまり、PQの方程式を求め、それとx0x + y0y = 1 との交点が点Qの座標です。 なので、PQを求めたいわけなんですが 求め方が分かりません。 y0x + x0y = 0 がPQなんですが、どうやって求めるのでしょうか? また、その座標を求めたとして、次に「OP*OQ=1であることを示せ」ですが 解説では OQ^2 = x^2 + y^2 =1/OP^2 よって、OP*OQ = 1 とあるんですが、なぜこのような考え方なのかが分かりません。 どのような考え方なんでしょうか? 至急お願いしますm(_ _)m解答を教えて下さい 曲線y=(x-2)^2と直線y=mx(m>0)との交点をP、Qとする。点A(4,-2)を通り直線PQに垂直な直線と線分PQ(両端含む)が共有点を持つようにmが変化するとき (1)Aを通りPQに垂直な直線と線分PQの共有点Hはつねにある定円周上にあることを示し、その円の方程式を求めよ (2)線分PQが通過する部分の面積を求めよ 【高校数学】図形と方程式 a,b,mを正の実数とする。 xy平面上の点A(a,0)から直線y=mxへ下ろした垂線の足をA'とし、x軸に関してA'と対称な点をPとする。 また、点B(0,b)から直線y=mxへ下ろした垂線の足をB'とし、y軸に関して対称な点をQとする。 線分PQを2:1に内分する点をRとする。 mの値が全ての正の実数を動くとき、Rの軌跡を図示せよ。 この問題で、私は P(p,-mp)Q(-q,mq) ※p=a/m^2+1,q=b/m^2+1 R(p-2q/3,-m(p-2q)/3)、 Rのx座標=X,y座標=Yとおき Y=-mXにX,p,qを代入してm>0の範囲に少なくとも1つ解を持つ範囲を求めようとしましたが、上手くいきませんでした。 よろしければどこが間違っているかの指摘もしくは解法をよろしくお願いします。 図形と方程式 次の問題の(2)の解き方がわからないので教えてください。 座標平面上に、円(x-2√3)^2+(y-4)^2=4(1)と、直線y=mx+2(2)がある。ただしmは定数とする。 (1)円(1)と直線(2)が接するとき、mの値と、そのときの接点の座標を求めよ。 (2)円(1)と直線(2)が異なる2点P,Qで交わるとき、mのとりうる値の範囲を求めよ。また、このとき線分PQの中点Mの座標をmを用いて表せ。 (1)は、(1)(2)からxの式にして、D=0で計算して、m=0のとき(2√3,2),m=√3のとき(√3,5)になりました。 (2)は、D>0で計算し0<m<√3まで出たんですが、その後どうすればよいかわかりません。 よろしくお願いします。 円 接線 軌跡 mを正とし、円(x-3)^2 + (y-5)^2 = 11をC1、直線x-y-m=0をlとする 原点OからC1に引いた1つの接線の接点をQとする このとき線分OQの長さは√23である tを正の実数とし、円x^2 + y^2 = 1をC2とする PからC1に引いた1つの接線の接点をQ1、PからC2に引いた1つの接線の接点をQ2とするとき、線分PQ1と線分PQ2の長さの比がt:1となるような点Pの軌跡をC3とする C3が点(1,1)を通るときのtとこのときC3がどのような軌跡を描くかを求めよ 解き方を教えてください 検討がつきません 最大値の問題 p,qは実数、2つのグラフ y=e^xとy=log(x-p)+q のグラフがただ一つ共有点をもつとき、2p-qの最大値を求めよ。 次のように考えました。どこが間違っているのかよく分かりません。 ご指摘ください。 共有点のx座標をx=tとする。2つのグラフはx=tで接することから、 (1)・・e^x=1/(t-p) , (2)・・e^x=log(t-p)+q (1)と(2)から、t^2-(p+q)t+pq+1=0 この解が t>pに存在するから、 ア・・軸 (p+q)/2<pのとき、解存在しない イ・・軸 (p+q)/2>pのとき、 判別式=(p+q)^2-4pq-4>=0 よって、pとqの条件をもとめると、q>p+2 この領域で、2p-qを求めようと考えましたが、当然最大値は決まりません。どこが間違っているのかよろしくお願いします。 この問題教えてください! この問題教えてください! 座標平面上において、放物線y=x^2上に異なる2点P,Qをとり、線分PQの中点をMとし、Mの座標を(a, b)とする。 (1) a=1, b=3のとき、線分PQの長さPQを求めよ。 (2) PQ=4の とき、b を a の式で表せ。 (3) PQ=4を満たしながらP, Qを動かすとき、b の最小値を求めよ。 (1)のPQが2√10になるのはわかりました。 それ以外の解答おねがいします。 軌跡の問題です 放物線y=x^2と直線y=mx+m(m>0)の交点をP,Qとする。 mが変化するとき、線分PQの中点の軌跡を求めよ。 という問題です。 答えはy=2x^2+2x(x>0)とわかっているのですが 途中の計算がさっぱりです。 教えてください。お願いします。 ちなみにx^2とはxの二乗という意味です。 初めてだから書き方が違うかもしれませんが・・・ 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 軌跡の問題です 座標平面上の点(p,q)はx2乗+y2乗≦8,y≧0で表される領域を動く。点(p+q,pq)の動く範囲を図示せよ。なんですが、回答が写 メのようになっています。なぜ第二象限だけダメなのかわかりません。どなたか教えてください。 教えてください!! 双曲線x^2-y^2/2=1がある。 (1)円A(2.3)を通る傾きmの直線が、この双曲線と相違なる2点P.Qで交わるためのmの値の範囲を求めよ。 (2)m=1のとき、弦PQの長さを求めよ (2)がわかりません!!>_< まず(1)は、私は点A(2.3)を通る 傾きmの直線は y=m(x-2)+3 ..... (1) これを題意の双曲線の式に代入したら”共有点”のx座標がわかるので代入して 2x^2={mx-(2m-3)}^2=2 ∴(2-m^2)x^2+2m(2m-3)x-{(2m-3)^2+2}=0 (2) となりました。 この式が相違なる二点で交わるための条件はb^2-4ac>0より 最終的に、3m^2-12m+11>0となり m<(6-√3) / 3 、(6+√3)/3<m(m≠±√2) と(1)が求まりました。 問題は、(2)なんですけど m=1の時(2)に代入すると x^2-2x-3=0 ∴x=-1,3 となるのですけど。。 弦PQの長さがこの後どうしたらよいのかわかりません>_< せっかくxの座標がわかったので。。 これをどうしたらよいのでしょうか?? たぶん Pの座標と、Qの座標を求めると思うのですけど?? (2)にm=1を代入した式はx^2-2x-3=0。 この式は、、双曲線があって、それと直線があって、そこでの交点のx座標だと思いました。。??? でも、y座標はどうやったらわかりますか??? ちょっとこんがらがってて、P.Qの座標を求めたくても解りません。 また、ゼンゼン上の方法で間違えていたら、どうしたらこの問題が解けるか、 誰か、教えてください!!>_< 面倒ですが助けてください。 mを実数とする。円(x-1)^2+y^2=4 と 直線y=mx の2つの交点をP,Qとする。 (1)P,Qの座標をmを使って表せ。(P<Qとする) (2)線分PQの中点Mの座標を(X,Y)としたとき、XとYをmの式で表せ。 (3)mが実数全体を動くとき、Xの値のとりうる範囲を求めよ。 (4)mが実数全体を動くとき、Mの軌跡の方程式を求め、図示せよ。 さっぱり分かりません(泣) 図示まで詳しい回答をお願いします<m(__)m> 面積の問題 高校2年生ものです。 ある問題集に以下のようなものがありました。 放物線y = x^2 の上を動く2 点P,Q があって,この放物線と線分PQ が囲む部分の面積が常に1 であるとき,PQ の中点R が描く図形の方程式を求めよ。 P,Qのx座標をそれぞれp,qとすると、面積が1だから(q-p)^3=6という式が成り立ち、Rはx=(p+q)/2,y=(p^2+q^2)/2 x=(p+q)/2を変形していくとpq=2x^2-y とまでは考えましたが、そこからどうやったらいいかわかりません。 どなたか教えてください。 軌跡の問題 [問題] y=x 上を動く点P, y=-x 上を動く点Q があって、原点をOとしたとき△OPQの面積は常に2である。このときPQの中点Rはどのような曲線上を動くか。ただし、点Pと点Qはy軸に関して同じ側にあるとする。 PとQの座標を適当な文字P(p,p), Q(q,-q)として△OPQ=2より導かれたpq=2とPR=QRを使って自分なりにやってみたのですが、どうもうまくいきません。ヒントでいいので教えて頂けないでしょうか。よろしくお願いします。 円の問題 円x^2+y^2=1の周上の1点における接線が 放物線y=(x'2/6)+1と共有点を持たない時、接点は円周上のどんな範囲にあるか? ⇔この問題解りません! まず始めに私は (x、y)=(0.0)半径は1の円を書きました、 その時、この円に接点がまず一つあって、そしてそこに一本直線が、つまり接線が伸びていて その線が、y=(x'2/6)+1と共有点を持たない時と考えました。つまり接線は、y=(x'2/6)+1とはぶつからない?という事だと思いました。 質問ですけど、どうやれば接点の円周上の範囲がもとまるのですか!?>_< 範囲ってことは相加相乗平均とか使うのですか?? 不等式とか問題には書いてませんし、きっと自分で範囲分けをすると思うのですけど、私には解りません>_< 誰か教えてください。 数学の問題で、点(4.2)を通り円x(2)+y(2)=4に接する2本の 数学の問題で、点(4.2)を通り円x(2)+y(2)=4に接する2本の直線の接点をP.Qとするとき、直線PQの方程式を求める問題です。 ()は二乗のことです。 微積分で解く問題だと思いますが、次の問題の解法が分かりません。 微積分で解く問題だと思いますが、次の問題の解法が分かりません。 曲線がある時、曲線上の点P(α,f(α))とし、 曲線に対する点Pのでの接線とX軸との交点Qとする時 |PQ|が一定であるような曲線の式を求めよ、という問題です。 曲線がy=f(x)のような素直な式なのかどうかすら定かではありません。 何かいい解法がございましたら、ご教授願います。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
補足
y^2+x^2+x+2y+4=0 かもしれません とりあえず円の方程式との交点の奴です