締切済み 次の多項式がQ上で既約であることを示せ。 2012/02/13 16:24 次の多項式がQ上で既約であることを示せ。 1)x^3+3x^2-8 2)x^3+3x^2+3x+7 3)x^4-22x^2+1 レポートで出たのですがわかりません。おしえてください。 みんなの回答 (5) 専門家の回答 みんなの回答 Tacosan ベストアンサー率23% (3656/15482) 2012/02/14 12:20 回答No.5 なお, 方針は背理法. 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 Tacosan ベストアンサー率23% (3656/15482) 2012/02/14 10:08 回答No.4 「有理数上でこれ以上割ることのできない状態という感じたと認識します。」っていうならそれを数式で表現すればいい. それがどういう「状態」なのかは知らん (日本語が微妙に変だし) ので, 数式でどう表現していいのかわからなくなったらこの表現をした本人に聞いてください. 定義をなおざりにして先に進むことにどのくらい意味があるかも知らん. 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 Tacosan ベストアンサー率23% (3656/15482) 2012/02/14 00:39 回答No.3 んじゃ「Q上既約」の定義を書いてみてください. 質問者 補足 2012/02/14 00:59 定義はわからないですが、有理数上でこれ以上割ることのできない状態という感じたと認識します。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 Tacosan ベストアンサー率23% (3656/15482) 2012/02/13 23:28 回答No.2 「Q上既約」の定義はわかりますか? 質問者 補足 2012/02/13 23:39 それは何となくですがわかります。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 Tacosan ベストアンサー率23% (3656/15482) 2012/02/13 18:01 回答No.1 何が分からないのですか? 質問者 補足 2012/02/13 22:20 どのように示せばいいのかがわかりません 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 既約多項式 複素数 α は α^3 =√-3 をみたすとき、X^6+3はQ[x]の既約多項式であるのは何故ですか。 既約多項式 f(X)=X^6+X^3+1 ∈Q[X]とおき、f(X)がQ[X]の既約多項式であることの示し方を教えて頂きたいです。 既約多項式 f(X)=X^6+X^3+1 ∈Q[X]とおき、f(X+1)の計算が分かりません。また、f(X)はQ[X]の既約多項式であることの示し方を教えて頂きたいです。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 代数の既約多項式の問題です。 代数の既約多項式の問題です。 a_n(x^n)+a_n-1(x^n-1)~+a_2(x^2)+a_1(x)+a_0=0 (a_0,a_1,・・・a_n∈Q:有理数) が既約とする。この方程式の解がn次未満のQ係数多項式の解とはならない事を示せ。 既約多項式:これ以上約せない多項式 わかる方いましたらよろしくお願いいたします。 多項式の既約性 次の多項式がQ上既約であることを示せ。 (1) x^5 + 5x^3 + 10 (2) x^(p-1) + x^(p-2) + … x + 1 ( p は素数) (3) x^4 + 1 (4) x^6 + x^3 + 1 以上です。 (1)はアイゼンシュタインの定理を用いれば示せたのですが、 (2)以降に苦しんでいます。 (2)に関しては、x±1で割り切れないことを言えればいいのかな、 と考えたりもしたのですが、いまいち納得できません。 どなたかわかる方、よろしくお願いします。 既約多項式・・・ 既約多項式を証明するにはどうすればよいのでしょうか? たとえばGF(3)の二次の既約多項式とは、 既約多項式の証明 p:素数 Zp=Z/(p)とする. 多項式f(x)=a0+a1x+・・adx^d∈Z[x]に対して、 f ̄(x)=a0 ̄+a1 ̄x+・・ad ̄x^d∈Zp[x]として、(a ̄∈Zpは整数aの剰余項) 最高次の項の係数がpで割れない原始多項式f(x)∈Z[x]について、f ̄(x)がZp[x]の既約元であれば、f(x)はZ[x]の既約元である ということを示したいのですが、f(x)が既約元でなくf=ghとおいて示そうとしてるのですが、ごちゃごちゃになっていまいちできません。どのような解法が適切でしょうか。 「既約な分数」というのは分かるのですが、「既約な多項式」とはどういうも 「既約な分数」というのは分かるのですが、「既約な多項式」とはどういうもののことなんでしょうか? 体 変数多項式環 既約多項式 体 K 上の 1 変数多項式環を K[X] とし,X^3- 2 によって生成される K[X] のイデアルを I とし、 剰余環 A = K[X]/I について。 K が有理数体 Q であるとき,X^3- 2 は Q[X] の既約多項式であることとA が体であることをどのように示していけばいいでしょうか。 既約 f(X)=X^6+X^3+1 ∈Q[X]とおき、f(X+1)の計算とf(X)はQ[X]の既約多項式であることの示し方を教えてくだい。 多項式が既約である事の証明 多項式、例えばf(x) = x^8 + x^4 + x^3 + x + 1が(Z/2Z)[x] で 既約である事はどうやって証明したらよいのでしょうか? 二次の多項式であれば証明できるんですが・・・。 どなたか教えて下さい。 既約多項式の問題 もし関数f(x)がf(x^2)の因数なら多項式f(x)はfspであると呼びます。また、fspであるf(x)の因数が、fspである低次の関数によって表すことができない時、f(x)をfsp既約関数と呼びます。たとえば、一次のfsp既約関数は、mxとm(x-1)だけです(m は任意のゼロではない実数の定数)。二次の場合、fsp既約関数はx^2+x+1だけです。 (1)3次や4次のfsp既約関数は存在するでしょうか?そういった関数の中で、整数のみを係数とするようなものはあるでしょうか? (2)fspの関数や、fsp既約関数の性質についてなにか一般化できるでしょうか? 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 一般のn次既約多項式は存在する? Kを0,1からなる体 とします。そこでK上の多項式を考えます。 1次,2次,3次,…の既約多項式を考えたとき、4次までの既約多項式は具体的に求めてみましたが、一般のn次既約多項式は存在するのでしょうか?直感的には存在しそうですが。。どなたか教えてください。 多項式の既約 x^n+1が既約であるためにはnが二のべきであることが必要十分である。 ということを説明しなければいけないのですが全くわかりません。 誰か教えてください(汗) 原始多項式の証明 原始多項式の証明 すみませんこの問題がどうしてもわかりません。だれか教えていただけないでしょうか? x^4+x+1(この式はFp[x]に含まれる、p=2)はFp上の4次原始多項式であることを示せ。 まず、既約多項式であることを証明して、原始多項式であることを証明するのだと思うのですが・・・ どうかお願いします。 既約について(代数学) 代数学の問題なのですが、 f(x)=x^3+ax+1(a≧1)とする。 f(x)∈Z[x]はQ(有理数)上で既約である事を示せ。 なんですが、これはf(x)がZ(整数)上で既約であることを示せばいいのですか?それとも直接Q(有理数)上で既約であることを示せばいいのでしょうか?できれば、解き方を教えてください。お願いしますm(__)m 代数学の、多項式の問題を教えて下さい。 f(X)=X^n+a1・X^(n-1)+a2・x(n-2)+・・・+an∈Z[x]を、最高次の係数が1の整数係数のn次多項式とする。 (1)Aが有理数でf(A)=0を満たす場合、Aは整数である事を示しなさい (2)Aが整数でf(A)=0を満たす場合、Aはanの約数である事を示しなさい。 (3)aは整数でa≠0,2であるとする。X^3-aX-1はQ[X]の既約多項式である事を示しなさい。 という問題です。 困っています。 分かる方、お願いいたします 生成多項式 生成多項式、既約多項式とは何かを教えてください。 あと、擬似乱数係数とは何かも教えてください。 それからできればKASAMI係数とは何かも教えてください。 因数分解と既約 整数係数の多項式が因数分解できないということは、 整数係数の多項式が既約であることと同義ですか? 多項式 (1) 2x^2-x+3 との和がx^2となる多項式って何がありますか?? (2) x^2+x-3 から引くと3x+2になる多項式って何がありますか?? 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
補足
定義はわからないですが、有理数上でこれ以上割ることのできない状態という感じたと認識します。