確率の問題です。
お願いします。
1)ひとつのサイコロを振って、最初に出た目が偶数ならもう一度、奇数のときはもう二度振る。出る目の合計の期待値を求めよ。
2)ひとつのサイコロを振り、1がでたら再びサイコロを振り、1が出る限りサイコロを振り続け、2~6がでたら終了する。出る目の合計の期待値を求めよ。
自分なり答えを出したのですが答えがないので不安で投稿させていただきました。
1)偶数が出る({2,4,6}の3通り)ともう一度振る({1,2,3,4,5,6}の6通り)ので全体が18通りで、合計が3~12あるので数える。奇数が出る({1,3,5}の3通り)ともう2度振る({1,2,3,4,5,6}×2=36通り)ので全体が108通りで合計が3~17
あるので数える。偶数奇数合わせて126通りなのでE=Σxpに代入して
E=(2/126)×3+(3/126)×4…=9.6
2)1回目で1が出る確率は1/6、2回目で1が出る確率は5/6*1/6=5/36…と考えていけばn回目で1が出たら終了ということは分かったのですが期待値となると分かりませんでした。詳しい説明をしていただけると幸いです。
お礼
ありがとうございましたm(_ _)m