- 締切済み
無限2重積分の問題です。
∫(0→∞)e(-x^2)dxの値を、∬(R^2)e(-x^2-y^2)dxdyの結果を利用して求めよ。 という問題です。 ∬(R^2)e(-x^2-y^2)dxdy =∫(0→n)dr∫(0→2π)dθe(-r^2)r =2π∫(0→n)e(-r^2)rdr =2π[-1/2*e(-r^2)](n→∞) =-π(e(-n^2)-1)→π(n→∞) と求まったのですが、これをどのように利用して ∫(0→∞)e(-x^2)dxの値を求めるのかが分かりません。 答えは√(π)となるようです。 どなたか教えていただけると助かります。 よろしくお願いします。
- みんなの回答 (2)
- 専門家の回答