ベストアンサー 高校 幾何学 2011/08/24 00:22 位相幾何学は高校でやりますか? みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー Ginzang ベストアンサー率66% (136/206) 2011/08/24 01:00 回答No.1 学習指導要綱上は扱われていないので、高校の授業ではまずやらないだろう。 ついでに言えば大学でも、数学などを専攻する人のために、選択科目として扱われている場合が多い。 質問者 お礼 2011/08/24 15:54 そうですか 面白そうだったので高校に入ったら学べるなかなと思っていたんですが、残念です。 通報する ありがとう 0 カテゴリ 学問・教育学校高校 関連するQ&A 鎖複体とは?位相幾何学の予備知識 鎖複体について知りたいと考え、位相幾何学を勉強していますが、 難しくてよくわかりません。 位相幾何学を学ぶにはどんな予備知識が必要ですか? 学力は高校卒業程度と思って頂ければよろしいかと思いますが、 数IIIなどは忘れつつあります。 また、わかりやすい本があれば教えて頂けないでしょうか? 「やさしい位相幾何学の話」という本を途中まで読んでいますが、 オイラー標数の計算で躓いています。 (これについては別の質問をするかもしれません) 高校で平面・立体幾何を学習する意味 高校で平面幾何、立体幾何を学習する意味がよくわかりません。 カリキュラム的には、解析幾何やベクトルへのつなぎ、代数幾何や証明の訓練にしか見えませんし、 日常生活で、高校で学習する幾何的知識を使うシーンもまず思い当たりません。 (三角比なんてのは三角関数のところで学べば済むことです。) 幾何学から更に発展する学問もほとんど思い当たりません。 地学・天文学が少し使うくらいでしょうか。解析幾何と代数幾何で事足りる気がします。 大学で数学を専門に学んではいませんが平面・立体幾何の講義などほとんどなく、位相幾何を学びに行くと聞きました。 となると、色んな証明を駆使して修得する平面幾何の知識とは、何するものぞ…ということになります。 (むしろ、数学史という特殊な一学問の知識を習得しているような気がします。) ・カリキュラム的意図 ・実用的意図 ・学問的意図 について、見識をお持ちの方がいらっしゃいましたら、ご教授願います。 位相幾何学の歴史について・・。 古くはオイラーの「一筆書き」や「多面体」の研究に端を発し、19世紀に至り ポアンカレなどの研究によって新しい幾何学として確立された「位相幾何学」とは、 それまでの幾何学と根本的にはどこが異なるか教えてください! お願いします!! 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 日常生活における位相幾何学 私は大学時代に位相幾何学のゼミに席をおいていましたが、数学を専攻していない(特に文系の)人に、「位相幾何学って?」ときかれると返答に窮してしまいます。身近な日常生活にたとえて説明したいのですが、思い浮かびません。どなたかいい案ありませんか?よろしくおねがいします。 位相幾何学的グラフ理論って簡単にいうと何ですか? 「位相幾何学的」の部分教えて下さい。 幾何学(トポロジー)を独学で学びたい! 幾何学や位相幾何学を独学で勉強したいのですが、独学で学ぶのに最適な参考書または演習書など教えてください。レベルとしては、高卒~程度でお願いします。極度に専門的過ぎるのは避けたいので、基礎・基本~標準くらいでわかりやすい内容の本をお願いします。 幾何学 幾何学とはどのようなものですか? 高校でならった公式で解けますか? 大学幾何学の位相多様体についての問題です。 大学幾何学の位相多様体についての問題です。 S^3={(X1、X2、X3、X4)∈R^4|?(i=1~4)(xi)^2=1}は位相多様体ですか? 証明もお願いします。 代数学とは。幾何学とは。 一口に言うと、代数や幾何はどのような学問でしょうか。 (代数というと中高校レベルの連立方程式を解いたり、線形代数などのことはおよそ知っています。また、幾何というとユークリッド幾何は昔やったことがあります。) 初等幾何 中学校でなぜ、あんなに難しい初等幾何(ユークリッド幾何学)を勉強するのでしょうか。高校に入ってベクトルを習ったら、幾何の問題も楽に解けるようになりました。その後国立大学の理学部化学科を卒業しました。受験数学は暗記で解けるのですが、初等幾何だけは、本当に頭がよくないと解けません。 幾何について 物理専攻の大学生です。 僕はもっと幾何に親しみたいと思っています。 高校までの間に曲がりなりにもやってきましたが、入試の勉強でやったくらいで、3次元立体を頭にイメージして回転させたり切断したりするのもあまり得意ではありません。図形について考えるのは好きではあるんですが。 もうちょっとセンスを付けたいと思うのですが、何か楽しくできるトレーニングみたいなものはないでしょうか? 現代物理(相対論や弦理論)を学習•研究するに当たっては、幾何学的な考察をする場面も増えて来るときくので、その準備も兼ねて慣れておきたいです。 幾何学の問題です。 幾何学の問題が解けなくて困っています。 わかりやすく解説していただけると助かります。 Xを位相空間、 ~をXにおける同値関係とする。 f:X→Zが商写像で x~x'⇔f(x)=f(x') をみたすならば、 商空間X/~ とZは同相になることを示せ。 という問題です。 どなたかよろしくお願いします。 位相幾何学(?) とあるときにこの問題を教えてもらったんですが、答えが全く分からなくて困ってます。 位相幾何学だ、と言ってました。 たとえば、ある立体を平面に展開して AB ↑↑ C→□□→C D→□□→D ↑↑ AB のようになれば、これはドーナッツ型になる、とのことです。 ここまではわかって、次の問題ですが AB ↑↑ D←□□→C A→□□←B ↑↑ DC だそうです。 これはどんな立体を展開したものなのか、全くわからず、何時間も使ってしまって困ってます…。 幾何学って? 最近仕事で幾何学が出てきました。 幾何学とは何でしょうか?学生の時は全く勉強しておらず、 いま、転職し分からない事だらけで困っています。 過去の質問を確認すると○○幾何学と色々あるようなのですが、 それさえも意味が分かりません。 すみませんが、幾何学を文系の私にでも分かりやすく教えて下さい。 よろしくお願い致します。 谷上 大学の幾何学の問題です。 大学の幾何学の問題です。 (1)A={(x、y、z)|y^2+z^2=2}は位相多様体 (2)A={(x、y、z)|y^2+z^2=2、0<x<3}は位相多様体} (3)A=R^2、B={(x、y、z)∈R^3|z=x^2+y^2}とすると、AとBは同相 よろしくお願いします。 位相・微分幾何学の歴史について 大学、大学院の数学専攻って、男性が大半を占めていると思うのですが、位相・微分幾何学の分野は女性が多い気がします。歴史的にもこの分野の女性研究者は多いのでしょうか? 数学(幾何学)の問題です。 数学(幾何学)の問題です。 (Yi)(i∈I) が位相空間Xの弧状連結な部分空間族で∩(i∈I) Yi≠0ならば∪(i∈I) Yiは弧状連結であることを示せ。 がんばりましたが、全然わかりませんでした。 解答と解答の過程を宜しくおねがいします。 位相幾何学です、解答よろしくお願いします! 位相幾何学です、解答お願いします! (1)S^1= {(x, y) ∈ R^2 | x^2 + y^2 = 1} から S^1 への写像 f : S^1 → S^1 を f (x, y) = (-x, -y) で定める f と恒等写像はホモトピックであることを示せ。 (2)R^2 \ {(0, 0)} は S^1 とホモトピー同値であることを示せ。 初等幾何の参考書 高校以下で習う初等幾何について体系的に書かれている参考書のタイトルをいくつか、できれば特徴を添えて教えて下さい。 ネットや書店で探してみても、幾何というタイトルが入ったものが見当たらないのですが、数学Aというものがそうなのでしょうか?数学Aは初等幾何の内容をすべて含んだものですか? ちなみにここでいう初等幾何とは、3次元以下(2次元でも可)のユークリッド空間に関する幾何学で、補助線などを用いて長さや角度を求めたり、ユークリッドの公理系から様々な定理を証明するものであって、座標などの解析幾何的な手法やベクトルなどの手法を用いないもの全般とします。 おすすめの幾何学の独習本 こんにちは。 大学の専攻の関係で幾何学が必修なのですが、昔から幾何は苦手なうえに うちの大学の幾何学を担当されている先生が 「厳しく、落としまくる先生」で有名なので、 (事実、履修は3回目とかという人もけっこういるみたいです…) かなり恐怖におののいています(^^ゞ そこで、履修は来年の予定なのですが、 できれば今のうちに頭を慣らしておきたいと思っています。 集合・位相などについて、入り口として入りやすい独習本などがあれば ぜひお教えいただきたいのです。 線形代数や微積に関しては、 受験の際にひととおりの勉強は終えてはいるのですが、 まだちょっと自信がないかも?です。(学校では履修中です) こんな状態なので↑レベル的にキツイかもしれませんが(^^ゞ もしオススメの本をご存知でしたら、お願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 タイヤ交換 アプローチしすぎ? コロナの予防接種の回数 日本が世界に誇れるものは富士山だけ? AT車 Pレンジとサイドブレーキ更にフットブレーキ 奢りたくありませんがそうもいかないのでしょうか 臨月の妻がいるのに… 電車の乗り換え おすすめのかっこいい曲教えてください! カテゴリ 学問・教育 学校 大学院大学・短大高校中学校小学校専門学校その他(学校) カテゴリ一覧を見る あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
そうですか 面白そうだったので高校に入ったら学べるなかなと思っていたんですが、残念です。