ベストアンサー ベクトルの極座標表示 2011/07/05 22:28 ベクトルを極座標表示するとき、 A∠θ そのとき、θの値が30゜や45゜、60゜のようなピッタリした数字にならない場合、どのように求めるのでしょうか? なるべく早く回答頂きたいです。よろしくお願い致します。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー alice_44 ベストアンサー率44% (2109/4759) 2011/07/05 22:54 回答No.1 極座標について考えているということは、 三角比は知っているのですよね。 中途半端な角度での計算は、↓のようにやります。 http://homepage3.nifty.com/y_sugi/cf/cf56.htm 近似値しか求まらないけれど。 質問者 お礼 2011/07/05 23:27 参考になりました。ありがとうございます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 極座標の基本ベクトルについて 3次元空間を考えます。 任意のベクトルAは極座標系の任意の3つの基本ベクトルer,eθ、eφを用いて、 A=Arer+Aθeθ+Aφeφと表せる。 とあるのですが、 er=(sinθcosφ,sinθsinφ,cosθ)eθ=(cosθcosφ,cosθsinφ,-sinθ)eφ=(-sinφ,cosφ,0)とxyz座標系を用いて表せて、er,eθ、eφはθとφによって異なるので、極座標系では基本ベクトルが無数にあると考えてよいのでしょうか?(初学者、独学中なので、イメージが湧きません) θ=φ=30°のときの基本ベクトルを用いてAを表した場合とθ=φ=60°の基本ベクトルを用いて表した場合では、それぞれのer,eθ、eφの係数(成分)が異なると思うのですが、どの角度の基本ベクトルを使うのかは自由に決めていくと考えてよいのでしょうか? 円筒座標系と球座標系の単位ベクトルに関して 直角座標系以外の円筒座標系と球座標系の位置ベクトルに関して質問があります。 まずは、円筒座標系から。 「円筒座標系で、原点とP(r,φ,z)との間のベクトルを求めよ」 直角座標系の場合だと、x,y,zのそれぞれの方向の単位ベクトルとそれぞれの方向の成分を 掛け合わせることで、ベクトルを表現できると思います。 しかし、円筒座標系の場合はどうなのでしょうか? 単純にx,y,zと同じようにr,φ,zについての単位ベクトルをa,b,c(例として)とし、成分を掛け合わせ OP=r*a+φ*b+z*c となるのでしょうか? しかし、これではおかしいと感じます。というのも、 とくにφはいったいどういう向きの単位ベクトルなんでしょうか? 円方向の単位ベクトルってことになるんでしょうかね? そうでなければ、座標変換して x=r*cosφ y=r*sinφ z=Z として、直交座標の場合と同じようにやるのでしょうか? 球座標系に関しても同じ質問です。 円筒座標系の位置ベクトル 円筒座標系の位置ベクトルrを(ξ、φ、z)の基本ベクトルを用いて示すと r=ξ×eξ+z×ez (eの後ろのξとzは添え字) であってますか?? その場合速度ベクトルvはどうやって表せるのですか?? 回答お願いします<(_ _)> 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 斜交座標系における、ある平面に対する垂直ベクトルの求め方 斜交座標系における、ある平面に対する垂直ベクトルの求め方 直交座標系ではなく、斜交座標系である平面に対して垂直なベクトルを求める方法について調べています。しかし、数学が非常に苦手なため、なかなか理解が進みません。直交座標系ではある平面に対して垂直なベクトルを求めるためには外積を用いれば一発ですむことは分かっているのですが、これは斜交座標系でも同様なのでしょうか? 物理のかぎしっぽ http://hooktail.sub.jp/vectoranalysis/AffineProds/ こちらでは斜交座標系の外積について扱っていますが、 A→=A1e1 + A2e2 + A3e3 B→=B1e1 + B2e2 + B3e3 としたとき、 C→=A→×B→=(1/V)(A2B3-A3B2)e1 + (1/V)(A3B1-A1B3)e2 + (1/V)(A1B2-A2B1)e3 (ここでVはスカラー量) となっており、ベクトルの方向的には直交座標系の演算と変わりないように見えます。 このときのC→は、A→とB→を含む平面にたいして垂直なベクトルと考えてよいのでしょうか? 幼稚な質問かもしれませんが、どうかご教授ねがいます。 補足1:当方、材料化学畑のもので、現在三斜晶系(単位格子の各辺の長さがばらばら且つ各軸の成す角は90°ではない)の結晶を扱っておりますので、直交座標系に直すとかではなく、斜交座標系のまま垂直ベクトルを求める方法を探しています。 補足2:とにかく斜交座標系で垂直ベクトルの方向が分かればいいので、ベクトルの大きさとか、求め方等、細かいことは問いません。 補足3:もしよろしければ参考になる書籍やサイトなどを紹介していただけるとありがたいです。 ベクトルです 点A(3,-2)を通り、dベクトル=(-3,5)に平行な直線と2点 B(4,-1)、C(-2,7)を通る直線との交点の座標を求めよ。 とゆぅ問題ですが…解き方がわかんなかったのでグラフを書いて求めようとしたらxの値が-4と出たんですがyの値が中途半端で出ませんでした。。。どうやったら求められますか?? 図々しいですがわかりやすい回答お願ぃしますm(_ _)m ベクトルの交点座標 3次元空間において、二つのベクトルの交点座標を求める方法を教えていただけませんか。 座標系は3次元直交座標で結構です。よろしくお願いいたします。 一本のベクトルに直交するベクトルについて あじぽんと申します。質問があります。 3次元空間にベクトルAが一本だけあるとします。 さらにベクトルAに直交するベクトルがいくつもあるとします。 ベクトルAの座標がわかっている時に、 ベクトルAに直交するベクトルの座標を、どれか一つだけ計算にて求めることは出来るのでしょうか? よろしくお願いします。 空間ベクトルなのですが・・・ 1. 3点、A(2,5,1)、B(0,3,7)、C(6,0,4)があ り、点Dを選び、四角形ABCDが平行四辺形にしたいのですが、 Dの座標をどのように設定したらいいのでしょうか? 2.次の三点が一直線上にあるように定数、a,bの値を定めよ。 (-3,2,-1)、(2,-5,3)、(a,b,-5) 3.aベクトル=(-2,-1,3)、bベクトル=(1,3,2) のとき、次の2式を同時に満たすベクトル、 xベクトル、yベクトルの成分を求めよ。 3x+y=a,7x+3y=b (ベクトル記号“→”は省略してます) ご回答の方、お願い致します。 **************** 4.平面ax+2y-z=6と次の方程式で あらわされる直線が平行となるように定数aの値を定めよ。 x=1-t,y=-1+5t,z=4+7t この問題については、自分、法線ベクトルを用いてやったら、できたのですが、なぜ、平行なのに、法線ベクトルを使うのでしょうか? よくわかりません、教えてください。 ベクトルと座標の導入の利点について よく図形問題の設定で、ベクトルで考えたり、座標で考えたりすると、あっという間に解けちゃうことがあると思うのですが、それぞれベクトルと座標の導入の利点はどこにあるのでしょうか。 極座標とベクトル 平面の極座標上の点 (r,θ) をベクトルと見なすことは可能なのでしょうか? 可能であるならば、 r1↑ = (r1,θ1) r2↑ = (r2,θ2) としたとき内積 r1↑・r2 や 和 r1↑+r2 はどんな定義になるのでしょう? 極座標の問題です。 極座標表示でr方向の単位ベクトルをer,これと直交する単位ベクトルをeθとすると er = i cosθ + j sinθ eθ= -i sinθ + j cosθ であらわされる。 ここで一般ベクトルAは、極座標表示でr方向成分Ar、θ方向成分Aθを用いて、 A = Ar * er + Aθ * eθ とあらわされる。θは時間変化する。 質量mの質点の運動方程式を極座標であらわせ。 速度ベクトル、加速度ベクトルは dr/dt、d^2r/dt^2 で分かったんですが、問題の運動方程式が分かりません。どなたか教えてください。 ベクトルの問題 1.OAベクトル=aベクトル、OBベクトル=bベクトル、|aベクトル|=|bベクトル|=1(絶対値)、aベクトル・bベクトル=k(内積)のとき、線分OAの垂直二等分線の方程式を、媒介変数tとaベクトル、bベクトル、kを用いて表せ。 2.A(1,2)から直線3x+4y-2=0に垂線を引き、交点をHとする。 (1)nベクトル=(3,4)に対して、AHベクトル=knベクトルを満たす実数kの値を求めよ。 (2)Hの座標を求めよ。 1、2の問題共に解き方がわかりません。 1の問題は、OBベクトルはどこで使用するのでしょうか? 2の問題は解き方の方針がわかりません。 順番からすると、Hの座標を先に求めなければいけないと考えたのですが、違いますでしょうか? よろしくお願いいたします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム ベクトル 空間座標の問題です。 xyz空間の原点Oと、Oを中心とし半径1の球面上の異なる4点A,B,C,Dを考える。 点A(cos(α/2),sin(α/2),0), B(cos(-α/2),sin(-α/2),0), (0<α<π)とする。 点C,Dは∠COA=∠COB=∠DOA=∠DOBを満たし、点Cのz座標は正、点Dのz座標は負とする。 (1)点Cの座標をαとθ=∠COA(0<θ<π)で表せ。 (2)ベクトルOA,OB,OC,ODの相異なる二つのベクトルのなす角がすべて等しい時、点Cの座標を求めよ。 という問題です。考え方が全く分かりません… ヒントでよいので、教えていただけないでしょうか。よろしくお願いします。 球面座標表示で∇の計算 球面座標表示で ∇= (∂/∂r) ar+ (∂/r∂θ)aθ + (∂/r sinθ∂φ)aφ ar : r方向の単位ベクトル aθ : θ方向の単位ベクトル aφ : φ方向の単位ベクトル を導きたいのですが、どのように導けばよいのかわかりません。 x=rsinθcosφ y=rsinθsinφ z=rcosθ を用いて導く事はできるのでしょうか? どなたか、アドバイス、ご指摘よろしくお願いします。 ベクトルの表示,内積について... 2つ質問があります. (1) 空間の位置ベクトルはよく(x,y,z)のように3つの実数で表されますよね.これは空間内に適当な座標系を考えたときの,ある点の座標だと思います.一方,空間内に適当な基底{e1, e2, e3}をとったときに任意のベクトルAがA=x e_1+y e_2+z e_3と表せることから,Aを(x, y, z)と書くと思います,この場合(x, y, z)は必ずしも空間内の点の座標と一致しないはずです.質問は,(x, y, z)と書かれたときに,これは空間内の点の座標であると見るのか,または,ある基底で線型結合を取る時の係数であると見るのか,どちらなのかということです.これは文脈によるのでしょうか? (2) (1)に関連するかもしれないのですが,高校で(a, b, c)と(x, y ,z)の内積はax+by+czであると習いますが,これは座標系の取り方に関係なく(直交座標や斜交座標に関係なく)定まるものなのでしょうか? デカルト座標表示から極座標表示への変換について 質問させていただきます 現在flashプログラミングに活かす為、ベクトル演算について勉強しております デカルト座標表示のベクトルB=3i^+4j^を極座標表示に しなさいという問題で Bの大きさをピタゴラスの定理を使い5と求める ところまでは理解できたのですが、 向きを求める計算で θ=tan-1(-1は指数です)(b2/b2)=tan-1(4/3)およそ 53.1°となっていたのですが 私の計算では、まず4/3=1.33333333を求め tan(1.33333)=0.023275....をもとめ 1.33333333../0.023275....=およそ57 となってしまいます どなたかお解りになられる方、 わかりやすくご教授頂けないでしょうか (中学生程度の数学知識の自分でも理解できるように) すみませんがよろしくお願いいたします 位置ベクトルの成分とは。 →a=(2,3) など、位置ベクトルの成分の場合 点Oに関するベクトルですから、平面座標のX座標Y座標と考えるのは違いますよね? では、この成分は何を指しているのでしょうか? また 0→=(0,0) これは、位置ベクトルでも同じでしょうか? すこし、混乱しています。 よろしくお願いします。 ベクトルについて 座標平面上に3点がありその3点を順にA,B,Cとした場合AからBに向かうベクトルに対してBからCに向かうベクトルが右に曲がるか左に曲がるかはどのように判断したらいいでしょうか? ベクトルについて・・・。 ベクトルA=(a,b),B=(c,d)について A+B=(a+c,b+d) という代数的計算で導かれる定義についてなのですけど, なぜこれが座標軸に無関係であることを確かめるひつようがあるのですか。 成分表示が座標軸に依存するからですか。 三次元極座標の位置ベクトルに垂直な速度ベクトル 三次元極座標で、座標R(r,θ,φ)に質点があり、位置ベクトルに対して垂直な質点の速度ベクトルVの表記がわかりません。 わかる方がいらっしいましたらお願いします。 速度ベクトルの大きさはVで、位置ベクトルに対して垂直であれば方向はランダムです。 私は、位置ベクトルに対して垂直な半径Vの円を考えて円上でのVを(V,θ2)としてそれを表記しなおそうとしたのですがわからなくなりました。 最終的な表記は極座標でもデカルト座標でもかまいません。 お願いいたします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
参考になりました。ありがとうございます。