- 締切済み
数II論証の問題について
「xが無理数ならば、x^2とx^3の少なくとも一方が無理数になることを証明せよ」 ↑という問題で、↓のような解答は可能でしょうか? 背理法を用いる。 xが無理数のとき、x^2とx^3がどちらも無理数でない(有理数)と仮定すると、 互いに素な自然数a,bと、互いに素な整数c,d(d≠0)…(*)を用いて x^2=a/b、x^3=c/d このとき、x=x^3/x^2=bc/ad (*)より、bc、adともに有理数なので、bc/adは有理数。 これは、xが、無理数であることに矛盾する。 したがって命題は真である。 強引に導いてしまったので、厳しく添削していただけると嬉しいです♪ よろしくお願いします。
- みんなの回答 (3)
- 専門家の回答
お礼
ありがとうございました(*^_^*)!! boisewebさんのアドバイスを参考にして、もっとわかりやすい解答になるように修正したいと思います。