- 締切済み
どなたかお願いします。
(問題1) 数列{an}の初項から第n項までの和Snが次のように与えられているとき、一般項anを求めなさい。 Sn=3an+2n-1 (問題2) 1辺4cmの正四面体OABCがある。辺OCの中点をMとし,3点A,B,Mを通る平面でこの正四面体を切ったとき、その切り口の図形の面積を求めよ。 という問題です。 できる方よろしくお願いします。
- みんなの回答 (4)
- 専門家の回答
みんなの回答
- さゆみ(@sayumi0570)
- ベストアンサー率27% (104/381)
A(n)=-(5/2)(3/2)^(n-1) + 2 マイナスが小さくてみにくかったので
- さゆみ(@sayumi0570)
- ベストアンサー率27% (104/381)
S(n)=3A(n)+2n-1 S(n-1)=3A(n-1)+2n-3 A(n)=(3/2)A(n-1) -1 A(1)=S(1)=3A(1)+1 A(1)=-(1/2) A(n)-2=(3/2)(A(n-1)-2) A(n)=-(5/2)(3/2)^(n-1) + 2
- B-juggler
- ベストアンサー率30% (488/1596)
宿題でしょうか? 丸投げは良くないですよ~。 自分でやるから宿題ですよ。 わからないときは、どこがわからないかを 書いてもらわないと、答えるこちら側も、答えだけ書けばいいのか、 解説もつけたほうがいいのか、分かりませんよ。 完全な他力本願でしたら、それは良くないですよ。カンニングと一緒になってしまいますよ。 将来苦しむのは自分ですから、こういう風に「憎まれ口」書かれるだけ、まだダイジョウブ? ヒントだけね。2番は書かれてあるので 1番ね。 良くやるのは、 S(n-1) Sn の一つ前を考えてみてください。 そうすると、an の一つ前 a(n-1) も分かりますから。 階差数列を求めていくような感じになっていくと思うけれど。 こういう問題は「よくある問題」なので、例題が教科書にもあると思いますよ。 いろいろあるけど、自分でやらないと意味がないですよ。
- LHS07
- ベストアンサー率22% (510/2221)
2番は5.6です。 3平方の定理すなわちピタゴラスの定理だけ理解できれば解けますですです。