ベストアンサー 数学教えてください。 2011/03/05 18:44 △ABCの辺BCの延長上に点Dがある。辺AB上に点Eをとって、△ABCと面積の等しい△EBCを作図しなさい。 画像を拡大する みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー 094675941 ベストアンサー率50% (1/2) 2011/03/05 19:43 回答No.2 この問題は、△ABCと面積の等しい△EBDではありませんか? でないと、この問題の点Dの存在理由が無くなります。 もし、△EBCではなく△EBDだったとしたら等積変形の問題でしょうか。 だとするならば、 (1) 頂点Aと点Dを直線で結ぶ。 (2) 頂点Cを通り直線ADと平行な直線を作図する。 (3) (2)で作図した直線と辺ABとの交点をEとする。 でいかがでしょうか。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) edomin7777 ベストアンサー率40% (711/1750) 2011/03/05 18:56 回答No.1 辺AB上の点Eを使って、 △ABC=△EBC になるのは、 点A=点E の時。 って、問題違っていませんか? 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 高校数学の問題です。 AB=15、BC=24である△ABCの辺AB上にAD=2となる点Dを、辺BCの延長上にCE=ADとなる点Eをとる。 △ABCの面積をSとおく。 DEとACの交点をFとすると AF/FC=□とな り、 △ADFの面積=□Sである。 また、点Dを通り辺BCに平行な直線とACの交点をGとおくと、 DG=□であり、 DF/EF=□となる。 したがって、△CEFの面積=□Sである。 □の部分をお願いします。 数学の証明問題について 数学の証明の問題がわからないので質問させていただきます。 この問題の答えとできたら解き方も教えていただきたいです。 1.正三角形ABCの辺ACの中点をDとし、辺BCのCを超えた延長上に点EをCD=CEであるようにとれば、DB=DEである。 2.二等辺三角形ABCにおいてAB=ACとする。辺AC上の点をD、辺BCのCを超えた延長上に点EをCD=CEであるようにとったとき、DB=DEとなるのは、Dがどんな点の場合か。 3.問題2から次の問題を得る。△ABCにおいて、AB=ACとし、∠Bの二等分線とACとの交点をDとする。BCのCの超えた延長上に点Eを、CD=CEであるようにとればDB=DEである。 4.△ABCにおいてAB=ACとし、辺ACの中点をDとする。辺BCのCを超えた延長上の点をEとしたとき、DB=DEとなるのは、Eがどんな点の場合か。 5.問題4から次の問題を得る。△ABCにおいてAB=ACとし、辺ACの中点をDとする。辺BCのCを超えた延長上に点EをCE=1/2BCにとればDB=DEである。 6.直角二等辺三角形ABCにおいて∠A=90°とし、∠Bの二等分線とACとの交点をDとする。CからBDへの垂線の足をEとすれば、BD=2CEである。 以上、6個の問題です。 回答よろしくお願いしますm(_ _)m 数学I 図形の問題 △ABCにおいて、AB=5、BC=8、CA=7、∠ABC=60°とする。 辺AB上にCD=CAとなる点D(点Aとは異なる点)をとる。 点Dを通り辺BCに平行な直線がACと交わる点をEとした時の、 (1)BDの長さ、(2)△DBEの面積 これらふたつの求め方の解説をお願いします。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム AB=15、BC=24である△ABCの・・・・ AB=15、BC=24である△ABCの辺AB上にAD=2となる点Dを、辺BCの延長上にCE=ADとなる点Eをとる。△ABCの面積をSとおく。 (1)DEとACの交点をFとすると AF/FC=□ となる。 □の部分をお願いします! 根号の問題 二等辺三角形ABC(AB=AC)の辺BAの延長線と点Dで接し、辺BCの延長線と点Eで接し、辺ACと接る円Oがあります。 AB=AC=2√2, BC=2√3-2、∠ABC=75°、円Oの半径を√3+1 とします。 これについて次の問いに答えなさい。 (1)∠DAOの大きさを求めなさい。 (2) △ABOの面積を求めなさい。 (3)線分BEの長さを求めなさい。 (1)はわかりました。 (2)、(3)の解き方を教えて下さい。 中学数学の問題 図の△ABCにおいて、辺AB、AC上の点D、EはAD:DB=1:3、AE:EC=2:3となる点である。 辺BC上にAC//DG、AB//EFとなるように、点F、Gをとり、線分DG、EFの交点をHとする。 このとき、△HFGの面積は△ABCの面積の何倍か。 という問題の解き方が分かりません。 教えていただきたいです! 数学の面積の問題 数学の面積の問題です。解説もよろしくお願いします。 下の図で、三角形ABCの3つの頂点A、B、Cは円周上にあり、AB>AC、∠ABCは90°以上の角である。 頂点Aを含まない弧BC上に2点D、EをB、D、E、Cの順に並ぶようにとる。4点B、D、E、Cは互いに一致しない。 頂点Aと点D、頂点Aと点E、点Dと点Eをそれぞれ結び、辺BCと線分ADの交点を点F、辺BCと線分AEの交点をGとする。 点Fが線分ADの中点、点Gが線分AEの中点で、辺BCが円の直径、BC=4cm、三角形ABCの面積と三角形ADEの面積の比が2:3のとき、三角形AFGの面積は何cm2か。 高校数学の質問です 1辺の長さが3の正三角形ABCの辺BCを1:2に内分する点をDとし,ADの延長が△ABCの外接円と交わる点をE,とする。DからBE,ECに下ろした垂線の足をそれぞれG,Eとする。このとき, i )ADの長さを求めよ ii )DHの長さを求めよ iii)△ABCと△DGHの面積比を求めよ 解法をお教えくださいorz 中3数学 はじめまして。 以下のような問題を知り合いの子どもさんに聞かれたけれど、 応えられませんでした。 わかる方がいたらお願いします。 正三角形ABC の 辺AC上に中点Eをとり、 辺BC上に中点Dをとります。 また、辺AB上には、 AP=PQとなるように、 二点P、Qをとります。 このとき三角形APEの面積は、五角形PQDCEの面積の何分のいくつになりますか? できれば解法も一緒に教えていただけると嬉しいです。 よろしくお願いいたします。 直角二等辺三角形を用いた平面図形の証明問題 ⊿ABCを∠A=90°、AB=ACとなるような直角二等辺三角形とする。辺AB、AC上に点D,Eをそれぞれ AD=2BD、CE=2AEとなるようにとると、∠ADE=∠EBCとなることを示せ。 という問題がわかりません。 点EからBCに平行な直線を引いて考えればいいのかなと思ったのですが、そこで行き詰ってしまって… よろしくお願いします。 数学I 教えて下さい 三角形ABCにおいて、辺ABを3:2に内分する点をD、線分CDをt:1-t(0<t<1)に内分する点をE、2直線AC、BEの交点をFとする。 DFとBCが平行であるときt=?であり、このとき三角形BCEの面積は三角形ABCの?倍である。 ?のところが分かりません。どうやればいいのでしょうか。 中学数学の問題 中学数学の問題です。 △ABCの辺AB,BC,CA上にそれぞれ点D,E,FをAD:DB=BE:EC=CF:FA=1:2となるようにとる。このとき、△DEFの面積は△ABCの面積の何倍か。 答えは1/3倍なのですが解き方が分かりません。中学生で習っている範囲の解き方での詳しい解説をしていただきたいです。よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 数学の面積を求める問題です。 図で、三角形ABCの辺BCを直径とする半円Oと辺AB、辺ACとの交点をそれぞれD、Eとする。 頂点Bと点E、頂点Cと点Dをそれぞれ結び、線分BEと線分CDとの交点をFとする。 ∠ABC=60°、∠ACB=75°、BC=4cmのとき、線分ADと線分AEと弧DEで囲まれる図形の面積は何cm2か。ただし、円周率はπ(パイ)とする。 (解説も宜しくお願いします。) 数学A 円の問題です △ABCの辺BC、およびAC、ABの延長に接する円の接点を、それぞれD、E、Fとする。このとき、△ABCの周の長さはAEの長さの2倍であることを証明せよ。 回答よろしくお願いします。 中3 数学 図形 AB=3cm、AC=2cmの△ABCがある。∠Aの外角の二等分線とBCの延長との交点をDとしAC∦EDとなるような点EをABの延長上にとる。CD=4cmであるとき、 (1)∠BACの二等分線とBCとの交点をFとするとき、BFの長さを求めなさい。 (2)△ABFと△ADEの面積比をもっとも簡単な整数の比であらわしなさい。 以上二問です。よろしくお願いします。 面積 ∠b=∠Rで、辺bcが辺abより長い直角三角形abcがある。辺bc上にab=bdとなるよう点dをとり、点dで辺bcに垂線をひく。この垂線と点bから辺acにひいた垂線の延長の交点をeとし、辺acが辺be、deと交わる点をそれぞれf、gとする。bdが5cm、bcが10cmの時の四角形fbdgの面積を求める問題で、三平方の定理と、相似を使っての答えの出し方は分かりました。両方を使わない答えの出し方、あるいはヒントをよかったら教えてください。 数学の図形の性質などで三角形の外接円がうまくかけま 数学の図形の性質などで三角形の外接円がうまくかけません。 例えば次のような問題 三角形ABCにおいて、AB=AC=5、BC=√5とする。辺AC上に点DをAD=3となるようにとり、辺BCのBの側の延長と三角形ABCの外接円との交点でBと異なるものをEとする。 についてですが、外接円が歪んで円になりません。書きやすい方法とかってありますか? 中学数学の図形の問題です 教えてください 図のようにAB=6 AC=3 ∠ACB=90°の直角三角形ABCがあり、∠BACの二等分線と辺BCとの交点をDとする。また∠BCG=90°の直角三角形BCGがある。円Oは辺BC、CG、BGとそれぞれ点D、E、Fで接している。 (1)円の半径はいくつか (2)FGの長さはいくつか (3)△BFCの面積はいくつか よろしくお願いします 中学の数学です △ABCにおいて、∠Aの二等分線と辺BCとの交点をD、∠Aの外角の二等分線と辺BCの延長線との交点をEとする。AB=8cm BC=7cm CA=6cmのとき、DEの長さを求めよ。 解説にBE:CE=AB:AC=4:3とあるのですが、その理由がわかりません! わかる方詳しい解説をお願いします。 数学の問題 三角形ABCにおいてAB=4、BC=6、CA=5とする cosAは( )である sinAは( )である 三角形の面積は、( )である。 これより、三角形の内接円の半径Rとすると、R=( )である。 内接円と辺ABとの接点DとするとAD=( )である。 同様に内接円と辺ACとの交点をEとする。 △ADEと面積は、△ABCの面積の( )倍である。 内接円の中心をOとする。直線COと辺ABとの交点をP、直線BOと辺ACとの交点をQとすると、 △APQの面積は、△ABCの面積の( )倍である。 この問題の穴に入る答えをわかりやすく教えて下さい。 できれば、計算の過程のお願いします 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など