ベストアンサー ベクトル; 2011/01/25 22:58 四面体のABCD辺の中点Mを,辺BCの中点をNとするとき,MN=sAB+tDCを満たす実数s,tの値を求めよ。 解いてみたのですが どうしても答えが合いません; 解き方を教えてください(;人;) みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー alice_44 ベストアンサー率44% (2109/4759) 2011/01/25 23:09 回答No.1 Mがどの辺の中点なのか書かなければ、問題になりません。 また、解いてみたのならば、貴方の誤答を書いて見せたほうがよいです。 補足に書けば、添削は試みましょう。 模範解答を貰ってボーっと眺めても、次に自分で解けるようにはなりません。 質問者 お礼 2011/01/25 23:43 回答ありがとうございます。 以後気を付けます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) Kules ベストアンサー率47% (292/619) 2011/01/25 23:12 回答No.2 >解いてみたのですが どうしても答えが合いません; とりあえずどう解いたかを書いた方がいいと思います。 そうすれば、どこの考え方が間違っているのか指摘してくれる人もいるでしょう。 このタイプの問題の場合一番よくあるミスが「始点の不一致」でしょうか? 左辺は始点がM、右辺はそれぞれAとDが始点です。 まずはこれを何かに統一(Aでもいいし、苦難の道のりを進みたければMでも構いません) し、後は前回私が回答したように、 「文章をまじめにベクトルで表現する」 を実行すれば答えにたどりつくと思います。(といってもこの問題の場合ほとんどベクトルに直すべき文章がないですが) あと、始点を揃えた後基準となるベクトルを3本決めますが、この3本のベクトルが同一平面上にあると答えが出ませんので、 その辺りにも注意してください。 参考になれば幸いです。 質問者 お礼 2011/01/25 23:45 指摘してくださり ありがとうございます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 平面ベクトル 平行四辺形の問題 平行四辺形ABCDにおいて∠DAB=120°、BC=1、辺ABの中点をM、辺BCを2:1に内分する点をNとする。 (1)ベクトル→MNを→ABと→BCを用いて表せ。 (2)辺ABの長さをxとおく。→AB・→MNをxを用いて表せ。 (3)辺CD上に点Pをとる。点Pを辺CD上で動かしても、→MN・→NPが常に一定の値になるとき、辺ABの長さを求めよ。また、そのときのMN・NPの値を求めよ。 (1)の答:→AB+(4/3)→BC (2)の答 x~2+(2/3)Xとなりましたが(3)は分かりません。 (1)、(2)含めて宜しくご指導ください。お願いします。 ベクトルの問題なのですが 四角形ABCDは平行四辺形ではなく、かつAB=BCである。 辺AB,CDの中点をそれぞれP,Q対角線AC.BDの中点をそれぞれM,Nとす。 PQ→とMN→をAD→、BC→であらわすにはどうしたらいいでしょうか>< あと平行四辺形でなくAB=BCってどんな四角形かも想像できないので教えてくださると嬉しいです。 ベクトルの問題の添削願い{→はベクトルということで} 一辺の長さが2の正四面体ABCDのAB の中点をM、CDを2:1に内分する点をN とする。このとき、|→(MN)|を求めよ。 という問題でまず→(AN)と→(AM)を求めて →(MN)=→(AN)ー{→AM} =-{a/2}+2b/3+c/3 となって |MN|^2を計算して答えが1/3になりました。 とれで答えがあっていますか? 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム ベクトルについて 三角形OABの辺ABを3:4に内分する点をCとし、 辺OAを2:1に内分する点をM、辺OBの中点をNとし、 直線MNと直線OCの交点をPとする。 OP→をOA→,OB→を用いて表せ。 という問題なのですが、 OC→=(4OB→+3OB→)/7 であることまでは求まったのですが、そこから詰まっています。 直線のベクトル方程式を使ってみたのですが、t,sを実数として MとNを通る直線上にPがあるので OP→=(1-t)(2/3)OA→+t(1/2)OB→ OとCを通る直線上にPがあるので OP→=s(4OA→+3OB→)/7 と連立方程式を立ててみましたが、どこか間違っていて答えにたどり着けません。 正答は、OP→=4OA→+3OB→/12 です。 よろしくお願いします。 空間ベクトルの問題なのですが 正四面体ABCDの辺AB、CDの中点をそれぞれM,Nとし、線分MNの中点をG、∠AGBをΘとする。このとき、cosΘあたいを求めよ どうかお願いします 台形 ベクトルの問題 AD//BC、AD=1/2BCである台形ABCDにおいて、AD,BCの中点をそれぞれM,N、CDを2:1に内分する点をTとする。 (1)AM、AN、ATをAB、ADを用いて表せ(←全部ベクトルです) (2)AB上の点Sに対して、TSとMNの交点がMNの中点になるとき、AS→をAB→で表せ。 この問題を解いていて、(1)はAM=1/2AD、AN=AB+AD、AT=1/3AB+4/3AD(全部ベクトルです)となりました(たぶんあってると思います)。 (2)で方針がたたなくて困ってます。 MNの交点をUとおいてAU→を2通りに表そうとしたのですがうまくいきませんでした。 アドバイスいただければ幸いです。よろしくお願いします ベクトル方程式 2点を通る直線の問題 今ベクトル方程式を勉強しているのですが、まったくもって理解できません。 今やってる問題↓ △OABに対して OP→=sOA→+tOB→ とおく。実数s,tが s≧0, t≧0, s+t=1/2 を満たしながら変化する時、点Pの存在する範囲を求めよ。 答え 点Pの存在する範囲は、辺OA,OBの中点M、Nを両端とする線分MNである。 解答で、いきなりm+nというのが出てきて意味がわかりません。 そもそもsとtって何なのでしょうか。 s+t=1/2 ってどういう状態なんですか?というかs+t=1て何??? 解答の途中でいきなり OM→ と ON→ が出てくるのですが、どういうことでしょうか。 解き方の方針?流れ?を教えていただきたいです。 回答お願いします。 ベクトルの演習問題について 次の問題がわかりません。 ご教授ください。 平行四辺形ABCDの内部の点Pが対角線BDを 4:5に内分している。 このとき、辺ABの中点をM,辺BCの中点をN,直線APと直線MNの交点をQとし, AB=2,AD=1,∠DAB=(π/3)のとき, (1) ベクトル(MQ)=□ベクトル(MN) (2) ベクトル(AQ)の大きさ=ルート(□) である。(1)の□は一ケタの整数、(2)の□は2ケタの整数です。 ベクトルの問題で式がうまく表記できなくて申し訳ないです。。 宜しくお願いします。 数学b ベクトルについて 数b ベクトル 四面体oabcにおいて、辺oa,ab,bc,co,ac,obの中点を それぞれp、q、r、s、m、n、とする。 1)四点p、q、r、sが同一平面上にあることを示し、四角形pqrsが平行四辺形であることを示せ 2)四角形pqrsの対角線の交点tは線分mn上にあることを示せ。 どなたかよろしくお願いします。 ベクトル 四角形ABCDにおいて、正の数a,bに対してBC↑=aAB↑+bAD↑が成り立っているとする。 対角線ACとBDの交点をEとする。 辺DC,BCの中点を,それぞれ点Q、Sとする。辺AB上の点Pと辺AD上の点RをAP↑=1/3AB↑,AR↑=1/6AD↑となるようにとる。 直線RS上に点Nをとり、RN↑=tRS↑となるように実数tを定める。 Nが直線PQと直線RSの交点であるときには t=(アa+イb+ウ)/(エオa+カキb+クケ) この問題だけわかりません。 途中の小問はわかったので必要だと思われる部分のみ抜き出しました。 必要ならば補足します。 回答お願いします。 ベクトル 平行四辺形ABCDで、辺BCの中点をL、線分DLを2:3に内分する点をM、AMの延長線と辺CDの交点をNとしたときの、AN:AMとDN:CDはどうやって求めたらいいのでしょうか。教えて下さい。お願いします。 数学のベクトルの問題ですが… 平行四辺形ABCDにおいて、辺BCの中点をLとし、線分DLを2:3に内分する点をMとする。また、直線AMと辺CDの交点をNとする。 (1)AM→をAB→、AD→で表せ 答えは、AM→=5/2AB→+5/4AD→ 解き方がわからないので解き方を詳しく教えてください 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 平面ベクトル96[B] 四角形ABCDは平行四辺形ではないとし、辺AB,BC,CD,DAの中点をそれぞれP,Q,R,Sとする。 (1)線分PRの中点Kと線分QSの中点Lは一致することを示せ。 (2)線分ACの中点Mと線分BDの中点Nを結ぶ直線は点Kを通ることを示せ。 数学 三角比? 1辺の長さがaである正四面体ABCDの2辺AB.CDの中点をそれぞれM,Nとする。直線MNと平面BCDの作る角をαとするとき、次の値を求めよ。 (1)線分MNの長さ (2)sinα お願いします。 全くもってわかりません。 ベクトル 四角形ABCDにおいて、正の数a,bに対してBC↑=aAB↑+bAD↑が成り立っているとする。 対角線ACとBDの交点をEとする。 辺DC,BCの中点を,それぞれ点Q、Sとする。辺AB上の点Pと辺AD上の点RをAP↑=1/3AB↑,AR↑=1/6AD↑となるようにとる。 直線RS上に点Nをとり、RN↑=tRS↑となるように実数tを定める。 Nが直線PQと直線RSの交点であるときには t=(アa+イb+ウ)/(エオa+カキb+クケ) PN=αAB+βAD PQ=γAB+δAD という形になったとすると、Nが直線PQと直線RSの交点であるとき点Nは直線PQ上にあるので α:β=γ:δ が成り立つ これを使って説くことができたのですがなぜこの比が成り立つのかわかりません… 回答お願いします ベクトル 三角形ABCの辺AB上の点Mと辺AC上の点Nとを 結ぶ線分MN上に、三角形ABCの重心Gがある MG:GN=3:2のとき 1.AM:MBとAN:NCを求めよ。 2.Dを辺BCの中点とする。直線MDと直線ACの交点をEとするときAC:CEを求めよ。 という問題の(1)の答えが AG↑に関する2つの式をたてて計算したら AM:MB=5:1,AN:NC=5:4になったんですが あっているでしょうか? どなたか教えてください! あっているでしょうか? 数3の回転体の体積の求め方について、教えてください。 次のような問題の場合について、教えてください。 ■一辺の長さが1の正四面体ABCDにおいて、ABとCDの中点をM,Nとするとき、この立体の直線MNを軸として1回転してできる立体の体積を求めなさい。■ というような問題なのですが、 MNの長さは普通に求めて(今回は、1/√2でした)、 MNに垂直にこの立体を切り、その断面積の回転体をS(t)として、∫S(t)dt で求めるという方針で解こうと思っています。 そこで、疑問なのですが、その断面積を求めるときに、 どのような断面になるかが、全くイメージできません。 答えは、長方形のような断面積になるらしいのですが、 そこまでたどりつくためのコツを教えてください。 よろしくお願いします。 ベクトルの問題 平行四辺形ABCDにおいて、BCの中点をM、CDを1:2に内分する点をNとし、ANとDMの交点をPとする。 解答ではCP:QP=s:(1-s)とおくと AQ↑=(1-s)AC↑+sAP↑となっているんですが何故こうなるのか分かりません。よろしくお願いします またまたベクトルです 五角形ABCDEにおいてAB=BC=DE=EA=1, ∠A=135°∠B=∠E=90°とする。 → → → 実数s, tに対して、点PをAP = sAB + tAEにより定める。 点Pが2点C,Dを通る直線上にあるためのs,tの条件を求めよ。 よろしくご教授ください。 ベクトル 三角形ABCにおいて、AB=8、AC=6、角BAC=60°である。 辺ABの中点をM、辺ACを1:2に内分する点をNとすると、 ベクトルAM=ア/イベクトルAB、ベクトルAN=ウ/エベクトルAC であ る。 また、ベクトルABとベクトルACの内積は ベクトルAB・ベクトルAC=オカ である。 点Mを通り辺ABに垂直な直線と点Nを通り辺ACに垂直な直線との交点をPとする。 s、tを実数として、ベクトルAP=sベクトルAB+tベクトルACとおくと ベクトルMP={s-(キ/ク)}ベクトルAB+tベクトルAC であるから、AB垂直MPより ケs+3t=コ であり、同様にAC垂直NPより サs+3t=シ である。したがって s=ス/セ、t=ソ/タ である。 さらに、直線APと直線BCの交点をQとおくと BQ:QC=1:チ/ツである。 ベクトル苦手なので、全然わかりません… 助けてください>_< よろしくお願いします 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
回答ありがとうございます。 以後気を付けます。