正方形に内接する円の半径
「1辺の長さが2の正方形ABCDに内接する円O1が辺ABと接する点をB1、辺ADと接する点をD1とする。次に、円O1に外接し線分AB1と線分AD1の両方に接する円O2をつくり、AB1と接する点をB2、AD1と接する点をD2とする。さらに、円O2に外接し線分AB2と線分AD2の両方に接する円O3をつくる。同様の操作を繰り返して円O4をつくる。O2の半径を求めよ。」という問題があり、解説に、「円O1,O2,O3,O4の半径をそれぞれr1,r2,r3,r4とし、2円O1,O2は外接するので(中心間距離O1O2)=r1+r2=1+r2 また、AO1=√2,AO2=√2r2」とあるのですが、AO2がどうして√2r2となるのかわかりません。どなたかお教えください。