ベストアンサー 電流密度の作る磁場のベクトル成分 2010/08/09 13:46 電流密度の作る磁場のベクトル成分 以下の問題で、磁場の係数を除いたベクトル成分が 図にあるように(-sinθ,cosθ,0)となるのですが、 その理由が分かりません。 どなたか教えていただけるとうれしいです。 図のように電荷密度ρで一様に帯電した 半径Rに無限に長い円柱がある。 また、座標軸を図に示すようにとる。 円柱を中心軸(z軸)の方向に一定速度vで動かした。 円柱の内部の電流密度ρvよりできる磁場を求めよ。 画像を拡大する みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー cocacola2010 ベストアンサー率67% (38/56) 2010/08/09 20:07 回答No.1 動径方向の単位ベクトルが(cosθ,sinθ,0)になることは分かりますか? それが分かれば、磁界の方向は右ねじの法則で上記のベクトルと+90°だけ角度が違うので (cos(θ+π/2),sin(θ+π/2),0)=(-sinθ,cosθ,0)です。 質問者 お礼 2010/08/09 21:10 ご回答いただきありがとうございます。 仰るとおりですね。 単位ベクトルは分かっていました。 右ねじの法則を復習する、いい機会になりました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育自然科学物理学 関連するQ&A 電流周りの磁束密度 一様な電荷密度ρで、半径aの無限に長い円柱が円柱軸方向に速度vで動くとき、円柱からr離れた点の磁束密度を求めよ。(r>a) というような問題を目にしたのですが、これってつまり電流の周りの磁束密度を求めろってことですよね? で、電流は定義から ρva^2 で、磁束密度 B=μI/2πr に代入したら良いと思うんですけど、今の場合円柱ということなので太さをもっているんですよね。 この場合とき方は上のままでいいんでしょうか。感覚的には積分しないといけないような感じなんですが。ひとつご教授よろしくお願いします。 ある電磁気、電流密度についての問題。 半径a,bの金属製の円筒を2つ用意し、中心軸が一致するように置く。2つの円筒間を電気伝導率σの一様な導体で満たし、両極間に電位差Vを与えた時、電流密度iを求めよ。 といいう問題があるのですが。電位差Vを与えた時点で、ある決められた量の電荷は円筒に帯電している、、のですよね?そうすると、そもそも電流は流れてないんじゃないか?と思うのですが、おかしいでしょうか? 解答では、電流密度の定義から i=σE とおいて計算しているのですが…。 よろしくおねがいします。 ベクトルポテンシャルと磁界について このような問題があります 長さLの直線電流Iによって生じるベクトルポテンシャルと磁界を求めよ 設定は電流の流れる直線をz軸とするような円柱座標系を選び、P(r,ψ,z)におけるベクトルポテンシャルを求めてそれから磁界を求めるように解答に書いてあります。 ベクトルポテンシャルAzを求めるところまでは理解できたんですが、次の磁界を求めるところで、解答には「直線電流はz方向に流れ、かつ軸対称であることからAr=Aψ=0かつδ/δψ=0となる。μH=∇×AからHr=Hz=0となり、Hψは次式で与えられる。Hψ=・・・・」 と書いてあります。 まず、「直線電流はz方向に流れ、かつ軸対称であることからAr=Aψ=0かつδ/δψ=0となる」になる理由がわかりません。ベクトルポテンシャルはz軸成分のみなのでAr=Aψ=0になるところはわかるんですが、ψ、r成分は一様なのでδ/δψ=0のみですがδ/δrも0になるのではないでしょうか。 あと、次の問題では、「半径aの長い円柱ないを密度がJなる一様な定常電流が円柱の軸方向に流れているとき、この電流分布によって真空中に生じるベクトルポテンシャルおよび磁界を求めよ」という問題です。 その解答は「電流分布の中心軸をz軸とするような円柱座標系を選ぶと、電流密度の成分はz軸方向成分となる。ベクトルポテンシャルもz軸方向のみとなる。系の対称性からδ/δψ=δ/δzとなる」と書いてあります。このδ/δψ=δ/δz=となるのはなぜでしょうか。 そもそも系の対称性からある成分の微分が0になったり、上のように等しくなる意味が分かりません。 対称性や一様性から、どのような場合にある成分の微分が0になったり等しくなるのでしょうか。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 導体円柱に電流が正、負の向きに流れている場合 以下の問題がわかりません。 z軸を中心とする半径Rの導体円柱に 0<r<R/2…z軸正の向き、R/2<r<R…z軸負の向きに電流密度iの電流が流れているとき、 円柱内外の磁場の分布を求めよ。 1.円柱外部 電流の総和が0となるので、アンペールの法則を用いて磁場も0として良いのでしょうか。 2.円柱内部 磁場の求め方がわかりません。R/2よりrが大きいか小さいかで場合分けをするのでしょうか? どなたかよろしくお願いします(;_;) この電磁気学の問題を解いてください。 半径aの無限に長い円柱が電荷密度pで一様に帯電しているときの電場を求める。円柱の中心軸をz軸にとる。z軸から距離rだけ離れた点P(x,y,0)の電場を考える点Pが円柱の内部にある時、点Pにおける電場の大きさを求めよ。また、電場ベクトル→E(x,y,z)=(Ex,Ey,Ez)を記せ。 よろしくお願いします。 微小電流が作る磁場。 無限に長い直線電流Iがつくる電場を、ビオサバールの法則より求めよ。 という問題につまづいてなのですが。 解答では、 まず電流に沿って、Z軸をとり、Z軸上の適当な点Oを原点とし、点OからZ軸に垂直な方向に距離rだけ離れた点Pにおける磁場を考える。Z軸上の座標zの点Zに長さdzの微小電流Idzをとり、この微小電流が点Pにつくる磁場をdHとする… という記述があるのですが、電流が作る磁場って、電流の方向に対して垂直に円を描くように広がるような磁場を作るのではなかったでしょうか?そうすると、点Zから垂直の方向には点Pはない(点Pは点Oに垂直になるように取った。x-y-z座標で言えば(r,0,0))ので、微小電流は点Pには磁場は作らないような気がするのですが…。 よろしくお願いします。 ベクトル磁場 z軸のaz方向に流れる24Aの線電流に対して(1.5,2,3)におけるz=0~6のベクトル磁場を求めたいのですが、有限長におけるH(ベクトル磁場)を求めるとき、H=I*(sinb-sina)*aφ(単位ベクトル)/4*π*ρの式を使うと求められるとおもうのですがうまく答えが合いません。a,bの値が間違っているのでしょうか?どなたかご解法お願いします。 アンペールの法則 アンペールの法則の問題(有名?)で分からないところを質問させていただきます。 半径aの円柱において、中心からd離れた位置に軸に平行に半径bの円柱状の孔を空ける。軸方向に密度iの電流を流す時、孔内にできる磁束密度を求めよ。 という問題なのですが、孔に仮想電流-iを流して考えるということは分かり、半径rの経路に対してアンペールの法則を使うとH=ri/2となることも分かりました。 しかし、解答のようなものを見つけたのですが、それによると H_ax =ai/2 × (-sinθ_1) H_ay =ai/2 × cosθ_1 H_bx =-bi/2 × (-sinθ_2) H_by =-bi/2 × cosθ_2 (θ_1,θ_2それぞれは大きい円と小さい円の中心からの角度) とありました。 電流iによる磁場をH_a、-iによる磁場をH_bとして、成分で書いていると思うのですが、H_bxとH_byのsin,cosの記号をどう考えているの変わりません。 図がないのでわかりにくいのですが、どなたかわかる方いっらっしゃいましたら、回答お願いします。別のやり方や参考になるページもありましたらお願いします。 ベクトルポテンシャルの問題について。 ベクトルポテンシャルの問題についての質問なんですが、「半径aの無限に長い円筒内部に軸方向を向いた一様な磁束密度Bが存在する時、この磁場に対応するベクトルポテンシャルを求めよ。」という問題なんですが、解法が分かりません。どなたか解法を教えてくれませんか?? 電荷密度の問題で・・・ 半径aの無限に長い円柱の中に、電荷密度が ρ=3Q(a-r)/πa^3 の電荷分布している。この円柱内外の静電場を求めよ。 という問題で、円柱内(a>r)の単位長さあたりの電荷量は、(インティグラルの0→r)2πrdr である。とかいてありました。電荷密度は、単位体積あたりの電荷量なので2πrを掛けて、電荷量を求めているとおもったんですが、この考え方はまちがっているんでしょうか??また、体積を掛けるのでしたら別にインティグラルを使わなくて、πr^2を掛ければすむのではないのでしょうか??そこのところがごちゃごちゃしてどーもしっくり来ません。どうか教えてください。お願いします。 渦電流とアンペールの法則 すいません、この問題をできたらわかりやすく教えてください。 電気抵抗率ρの導体でできた半径aの無限に長い円柱棒がある。その中心軸に平行に磁界を加えて、磁束密度をdB/dt=αの割合で増していく。 このとき生じる電流によってできる中心軸上の磁束密度はいくらか? 電磁気学の問題です。 半径aの無限に長い円柱の中に、電荷密度がρ=3Q(a-r)/πa^3の電荷が分布している。この円柱内外の静電場を求めよ。なお、Qは円柱の単位長さ当たりの電荷量、rは円柱の中心軸からの距離である。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 磁束密度について 磁束密度について 半径aの円電流Iが、円の中心を通り円に垂直な軸上に作る磁束密度を求める問題です。 円はxy面内にあり、中心を原点とする。z軸上の点Pにおける磁束密度を計算する。点Qにある円周の一部分Δsの作る磁束密度ΔBは、図のようになる。点Qが円周上を一周すると、ΔBはz軸を軸とする円錐面上を一周する。したがって、そのxy成分は合成すれば0になる。一方、z成分はQの位置によらない。 ΔBz=(μ0/4π)((Δs×ベクトルQP)z/r^3)=(μ0/4π)((Δs×ベクトルQP)z/r^3) である。最後の書きかえでは、ベクトルQP=ベクトルQO+ベクトルOPでベクトルOPはΔs×ベクトルQPのz成分には関係しないことを使った。(Δs×ベクトルQO)z=aΔs,Δsの一周積分値は円周2πaであるから Bz=μ0I2πa^2/4π(a^2+z^2)^(3/2)=μ0Ia^2/2(a^2+z^2)^(3/2) となる。 この答えで、ベクトルOPはΔs×ベクトルQPのz成分には関係しない、とありますがなんででしょうか? ベクトルQP=rであるのになぜベクトルOPがいらないんでしょうか? 磁場とともに動く系? http://imagepot.net/view/123780002752.jpg この図を見て頂きたいのですが、#1の電荷が動くことで発生した磁場が#2の電荷と相互作用し、#2の電荷が動くことで発生した磁場#1と相互作用する、という図なのですが、 もし観測者が#1と一緒に動いた場合、#1は動いていないので、磁場もベクトルポテンシャルも発生しないことになります。 これってどう考えれば良いのでしょうか? 特殊相対論が必要であることは分かるのですが、簡単に教えて頂けないでしょうか? 物理学の問題~磁束密度の大きさについて。 物理学の問題~磁束密度の大きさについて。 半径aの無限に長い円柱状の導線に電流Iが一様に流れているとき、導線の内部と外部に生じる磁束密度の大きさを求めよ。 …という課題を出されました。が、解き方が分からず非常に困っています。 どなたかご教授していただけるとありがたいです。 宜しくお願いします。 電磁気の問題で分からないところがあります 質問させていただきます (1)図3に示すように2辺の長さが2a、2bの長方形の導線回路に電流Iが流れているときに中心に生じる 磁界の強さHを求めよ。 (2)直径Lの円形コイルと1辺がLの正方形コイルがあり、それらの回路に等しい電流Iが流れるとき それぞれの中心に生じる磁束密度Bの比を求めよ (3)半径aの無限に長い円柱状の導体内を、一様な密度で強さIの電流が流れているとき 円柱の内外に生じる磁束密度を求めよ。 (1)図の中心の磁場は4辺からの寄与の和となるので、ビオサバールの法則より 4×I(cosθ1+cosθ2)/4πr でしょうか? (2)円形コイルのほうは B=u0I/2a 正方形のほうは分かりません・・・ (3)アンペールの法則よりB=u0IR/2πa^2になるのですが、 なぜコレは円柱の外でも成り立つのでしょうか? 長々とすみません・・・ 回答よろしくお願いします 『物理学』 円形電流の中心を通る軸上にできる磁場 どうしても、具体的な数字になるとよく分からなくなってしまいます。 勉強が足りなくお恥ずかしいのですが、唸っててもらちがあかないので是非お力を貸して頂けないでしょうか? 以下の問題が分からないのです。 半径10cmの円形導線に4Aの電流を流す時、その円の中心点を通る軸上で中心点から10cm離れた点に出来る磁場の磁束密度の大きさを求めよ。 宜しくお願いします。 磁束密度について 磁束密度について 半径aの円電流Iが、円の中心を通り円に垂直な軸上に作る磁束密度を求める問題です。 円はxy面内にあり、中心を原点とする。z軸上の点Pにおける磁束密度を計算する。点Qにある円周の一部分Δsの作る磁束密度ΔBは、図のようになる。点Qが円周上を一周すると、ΔBはz軸を軸とする円錐面上を一周する。したがって、そのxy成分は合成すれば0になる。一方、z成分はQの位置によらない。 ΔBz=(μ0/4π)((Δs×ベクトルQP)z/r^3)=(μ0/4π)((Δs×ベクトルQP)z/r^3) である。最後の書きかえでは、ベクトルQP=ベクトルQO+ベクトルOPでベクトルOPはΔs×ベクトルQPのz成分には関係しないことを使った。(Δs×ベクトルQO)z=aΔs,Δsの一周積分値は円周2πaであるから Bz=μ0I2πa^2/4π(a^2+z^2)^(3/2)=μ0Ia^2/2(a^2+z^2)^(3/2) となる。 この答えで、ベクトルOPはΔs×ベクトルQPのz成分には関係しない、とありますがなんでですか? つまりどういうことをいいたいんでしょうか? 自分は頭かたいんで、本当にこれ以上わかりやすい回答はないだろうというくらいじゃないと多分理解できません。 分りやすい回答を提示できる方はいませんか? 自分は分ったような気分になってるのが一番嫌なのでどうか本当に分りやすい回答をお待ちしております。 お願いします。 電磁気学が難しく授業についていけていません(~_~ 以下の問題が分かりません… 1.真空中に半径aの導体球があり、+Qに帯電されている。この導体球を囲うように、半径b(b>a)の薄い球殻が置かれている。球殻には均一に合計-Qの電荷を帯電させた。導体球と球殻の中心は一致している。以下の問いに答えよ。 1)球殻の中心を原点とするとき、げんてんからの位置ベクトルrの点での電界を求めよ。 2)空間に蓄えられる静電エネルギーUをもとめよ。 2.断面の半径がaで長さが無限大の円柱上の物体の内部を一様に電流Iが流れている。またこの円柱状物体と中心軸が一致した長さが無限大で半径がb(b>a)の薄い円菅に一様に電流Iが円柱状物体の電流と同じ向きに流れている。このときの磁界の大きさをアンペールの法則(積分形)を適用して求めよ。 長くなってしまい、すみませんm(_ _)m 1)はなんとかできたとはおもいますが、球殻と導体球が実際どのような電界が出ているのかがイメージできません(~_~;) 磁場中の電流に働く力の問題の質問です。 磁束密度Bの一様な磁場中に置かれた半径aの円形の回路に大きさIの定常電流を流したときの並進力、偶力を求めよ。 わかる方、回答お願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 自然科学 理科(小学校・中学校)化学物理学科学生物学地学天文学・宇宙科学環境学・生態学その他(自然科学) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ご回答いただきありがとうございます。 仰るとおりですね。 単位ベクトルは分かっていました。 右ねじの法則を復習する、いい機会になりました。