ベストアンサー 試験が近く困っています 2010/06/22 20:44 試験が近く困っています 次の問題の解き方を教えてください 次の関数のn次導関数を求めよ(n>=1) y=exp(x)/1-x よろしくお願いします みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー nag0720 ベストアンサー率58% (1093/1860) 2010/06/23 01:04 回答No.1 まずは5次導関数くらいまで求めてみましょう。 それを基にn次導関数を予想し、帰納法で証明する。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 試験が近く困っています 試験が近く困っています 次の問題について何ですが 次の関数が与えられた点(x=0)で極致をとるか漸近展開を用いて調べなさい f(x)=x^2sinx-xsin^2x でこれを展開すると f(x)-f(0)=1/6x^5+o(x^5) なんですがこの式はxが十分に小さいときは 1/6+o(x^5)/x^5=1/6>0 なのでf(x)>f(0)となり極小値をとると思うのですが 解答では極致はとらないとなっているのでなぜでしょうか よろしくお願いします 確率の問題 確率の問題 X~N( 0 , 1 )のとき、Xの平方 Y = X ^ 2 の分布関数を考える。以下の問いに答えよ。なお、N( 0 , 1 )の分布関数をΦ(x)、確率密度関数をφ(x)で表す。 (φ(x) = 1/(√2π) exp{ - x^2/2 } 、-∞ < x < ∞) (1)Yの分布関数FY(y)をΦ(・)を使って表してください (2)Yの確率密度関数fy(y)をφ(・)を使って表してください。また、fy(y)を具体的に求めてください。 確率の問題で、よろしくお願いします。 確率変数の分布の問題について質問です 確率変数の分布の問題について質問です 私は高校生で、経済学に興味があり、統計学を自習しておりますがわからない問題があるので質問させていただきます 1、ポアソン分布(f(x)=(e^-λ*λ^χ)/χ! χ=0,1、2・・・)の積率母関数がe^{λ(e^t-1)}となることを示し平均と分散をもとめよ 2(1)連続確率変数χが (f=(χ)e^(-χ) χ>0のとき ) (=0 xは0以下のとき ) なる密度関数をもつ時y=-2x+5で定義されるyの密度関数を求めよ (2)χが正規分布N(μ、σ^2)に従う時χ=logeyなるy すなわちy=e^χは次の密度関数を持つことを証明せよ。 (f(y)={e^{-(logy-μ)^2/yσ√(2π)}}/{yσ√(2π)} y>0のとき ( =0その他のとき またyの平均はexp(μ+(σ^2)/2) 分散はexp(2μ+σ^2)[exp(σ^2)-1]となることを導け 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 合成関数の微分 すみませんどなたかおしえてください。 下記の関数のy'=の解が異なっている点をおしえてください。 問題 y=exp^(1/2) の y'= t=1/x y' = (t)' * (exp^(t))' y' = t * exp^(t) y' = (1/x) * exp^(1/x) y' = exp^(1/x) / x 以上のようになるのですが・・・・ よろしくお願い致します。 数学微積の、n次導関数の解き方が分からないです。 以下の問題の解答が分からなく困っています。 どなたか助けてくださると嬉しいです。どの問題でもかまいません。 よろしくお願いします。 次の関数のn次導関数を求めよ (1)y=√(1-x) (2)y=x^3・e^2x (3)y=1/(x^2-1) 複素形フーリエ級数について いつもお世話になっています 大学の勉強でフーリエ解析をしているのですが、 よく分からない問題があるので質問させていただきます 問題は 次の関数の複素形フーリエ級数を求め、次に実数形になおせ f(x) = 0 (-π < x < 0 ) x (0≦x≦π) というものです。 回答はあるのですが、∑の範囲がn=1から∞になっています。 授業では∑の範囲を-∞から+∞までで解いているので、混乱してしまいます (ちなみに教科書の解答は π/4 + i∑(-1)^n/2n ( exp(inx)-exp(-inx) ) -1/π∑1/(2n-1)^2 {exp(i(2n-1)x + exp(-(2n-1)x)} となっています(分かりにくくてすみません・・・)) 教科書の解答はどのように導いているのか、また、∑の範囲を-∞から+∞までにするとどのような回答になるのか、教えていただけると嬉しいです。 exp(x+y)=exp(x)exp(y)を和を計算することによって示 exp(x+y)=exp(x)exp(y)を和を計算することによって示せ。 つまり Σ(0≦n≦∞)(x+y)^ n/n !={Σ(0≦n≦∞)(x)^n/n !}{Σ(0≦n≦∞)(y)^n/n !} を示せ という問題を出されたのですが、どうアプローチすればいいのかわかりません。 和の取り方を工夫すればいいと言われたのですが、どのように工夫すればいいのか見当もつきません。 始めてみたときは帰納法で証明できるかと思ってやってみたのですがうまくいきませんでした。 回答のとっかかりでもいいので教えてください。お願いします。 複素数のlog計算 またわからない問題にあたってしまいました! 問題:exp(jz) = (2±√3)j この式のzを求める方法なのですが、z=x+jyとおき、上式に代入しました。 すると、 左辺はexp(jz) = exp(jx-y) = exp(jx)exp(-y) 右辺は(2±√3j)expj(π/2 + 2πn) と変形できました。したがって、 exp(-y) = (2±√3) ⇒ y=-ln(2±√3) π/2 + 2πn = x の2式にできると考え、 よって答えは z = x+jy = -ln(2±√3)+2πn+π/2 めでたしめでたし・・と思い答えを見たらちょっと違ってました。。 対数を求める公式があるのは知ってますが、なるべくそういうのに頼りたくなかったのでこの方法でやってみたんですが、なぜ間違っているのでしょうか? わかりにくいですが、よろしくお願いします。 ちなみに正しい答えは、z = -jln(2±√3)+2πn±π/2です 減衰振動の曲線について 宿題ででたのですがどうにもわからないのでどなたか教えてください。 いま、包絡線の指数関数がy=exp(-x)、 周期関数がsin(2π/T)θであるときの減衰曲線を関数形で表しなさい。の問題で(0,1000),(1,0.367),(2,0.135)を通ります。 さらにy=exp(-x2)のの既形を予想して描きなさいという問題です。 物理は苦手でさっぱりなんです。おねがいします。 フーリエの積分公式の導出中に納得いかない部分が… 今年初めて大学でフーリエ変換を習ったんですが、フーリエの積分公式の導出中にどうしても納得いかない部分があったので質問させて頂きます。 まず、複素フーリエ級数の導出に関して。 周期T=2Lの周期関数f(x)に対して、 f(x)の複素フーリエ級数は、 f(x)=Σ<n=-∞...∞>{ C[n]exp(inπx/L) }・・・(1) 複素フーリエ係数は、 C[n]=1/2L*∫<-L...L>{ f(x)exp(-inπx/L) }dx・・・(2) ここまではOKです。 さて、次にフーリエ変換の導出になった時に、式(2)の形が C[n]=1/2L*∫<-L...L>{ f(y)exp(-inπy/L) }dy・・・(3) となっていたのです。 おわかりでしょうか?xがyに変わっています。 この式(3)を式(1)に代入すると、 f(x)=Σ<n=-∞...∞>{ 1/2L*∫<-L...L>{ f(y)exp(-inπy/L) }dy } ω[n]=nπ/L Δω=π/L と置いて、 f(x)=Σ<-∞...∞>{ 1/2π*∫<-L...L>{ f(y)exp(-iω[n]y)dy }exp(iω[n]x)Δω } ここでL→∞の極限を考えると、 f(x)=1/2π*∫<-∞...∞>dω∫<-∞...∞>{ f(y)exp(-iω(y-x)) }dy となる。 ここで、最後にyが残ってくるのがどうしても腑に落ちません。 元々fとC[n]は同じ変数の関数のはずでは? いつの間にかyの関数に変わっている上に、yとは何なのか一切説明がありません。 定積分ですから変数に何を持ってこようが答えは同じ定数になるとは思うんですが、教科書を見てもyに関して全く断りなく使ってますし、ある程度Webで検索してみてもyに関する記述がある資料は見つかりませんでした。 しかも教科書のその後の演習では普通にf(y)にxを入れて解いてるし…。 一体このyはどこから現れたのでしょうか?何の意味があるんでしょうか?置き換えなきゃいけないんでしょうか? 先生に聞こうにも非常勤のため普段は大学にいないんです。 というより明日がテストなので…。 というわけでお分かりになる方、なるべく早急に回答をお願いします! 簡単な微分方程式がとけない!! 一階微分方程式を解いたのですが、検算であいません。どこがおかしいのでしょうか? (d/dx-n/x+1/n)y=0 ⇔dy/dx=(n/x-1/n)y ⇔1/y dy/dx=n/x-1/n (yで割って、変数分離) ⇔∫dy/y = ∫(n/x-1/n)dx (xで積分) ⇔Log(y) = nLog(x)-x/n+c (cは定数) ⇔y=c' exp(n) xexp(-x/n) (c'=exp(c)) yは求まります。しかし検算すると、 dy/dx =c' exp(n) exp(-x/n)-c'/n exp(n) xexp(-x/n) となり、 (n/x-1/n)y=(n/x-1/n)c' exp(n) xexp(-x/n) =c' exp(n){nexp(-x/n)-1/n xexp(-x/n)) =c' exp(n) nexp(-x/n)-c'/n exp(n) xexp(-x/n) となって、n倍異なる部分があります。どこが間違いなんでしょうか?私はまったく矛盾に気が着ませんが、間違っているように見えます。どなたか知恵を貸してください。 数学に関する質問です。 数学に関する質問です。 n次エルミート多項式Hn(x)を含む次の関数hn(x)のフーリエ変換を求めたい。 hn(x)=Hn(x)exp(-(x^2)/2)=exp(x^2)/2)(d/dx)^(n)exp(-x^2) わかる方がいましたら参考にさせていただきたいです。 よろしくお願いいたします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 微分の問題 次の関数f(x)のn-1回微分を求めたいのですが、どなたかよろしくお願いします。 1) f(x)=exp(-ipx)/(x-ia)^n 2) f(x)=exp(-ipx)/(x+ia)^n 計算式の全微分について はじめまして。全微分の問題で式の扱いに困ってしまったものがありまして、お力貸していただければと思い質問させていただきました>< Z=X^n exp(y^m)を全微分!という問題なのですが、途中まで考えてはみたものの。。 dZ=n X^n-1 dexp(y^m) + *** dX^n んーexp(y^m)を微分するとどうなるのか(***の部分) 表記しづらい計算式で申し訳ないのですが、expの扱いがどうもひっかかってます。 よろしくお願いいたします。 数学 積分を求める問題です 【問題】 y' = -y+1 を満たし、y(0)=0 である関数を求めよ。 【自分なりの解答】 y' = -(y-1) y'/y-1 = -1 両辺積分して、 ln (y-1) = -x+C y-1 = exp (-x+C) y = exp (-x+C) +1 y(0) =0 より exp (C) = -1 C = ??? 模範解答ではCは0になるはずなのですが、どこが間違っているのかわからないです??? 次の大学数学の問題の解答解説をお願いします。 次の2つの等式が成り立つような関数G(x,y)を1つ求めなさい。 ∫[0→x]{∫[0→x]exp(-y^2)dy}dx=∫[0→x]G(y,z)dy,G(y,y)=0 cosh(x)の逆関数について cosh(x)の逆関数について質問です。 証明において y=cosh(x)とおくと exp(x)=y±√(y^2-1) となり exp(x1)=y+√(y^2-1),exp(x2)=y-√(y^2-1) とおくと exp(x1)・exp(x2)=1,exp(x1)≧exp(x2) なので,0<exp(x2)≦1≦exp(x1) ∴ log(exp(x2))≦0≦log(exp(x2)) となりますが exp(x1)・exp(x2)=1,exp(x1)≧exp(x2) なので,0<exp(x2)≦1≦exp(x1) となる理由がわかりません。 なぜ、exp(x1)・exp(x2)=1であるとexp(x2)≦1≦exp(x1)と言えるのですか? 誰か教えて頂けると幸いです。 よろしくお願いします。 ディラックのデルタ関数δ(x) ディラックのデルタ関数δ(x)に対する次の式を示せ。 (1/2)π∫[-∞,+∞]exp(ixy)dy=lim[ε→+0](1/2π)∫[-∞,+∞]exp(ixy-ε|y|)dy=lim[ε→+0](1/π){ε/(x^2+ε^2)}=δ(x) ∫[-∞,+∞]δ(x)dx=1からどうやって導くのですか?詳しい解説お願いします。 n次導関数を求める問題です。 次の関数のn次導関数を求める。 (1) y=sinx (2) y=logx (3) y=e^(1-3x)・・・eの(1-3x)乗です。 同じ問題で、規則的に変化する(たとえばy=x^6や、y=(3x+2)^mなど)問題は解けるのですが、上のようなパターンが解けません。 解き方を教えてください。申し訳ないですが早めに回答していただきたいです。 よろしくお願いします。 ガンマ分布 y=exp(-x) の分布を持つn個の独立な変数の和は、ガンマ分布 (x^(n-1))*exp(-x)/G(n) であらわすことができます。 (1)ここからカイ2乗分布はどのように誘導できるのでしょうか? (2)独立な変数のn個の4乗の和(カイ4乗分布?)はガンマ関数で あらわすことができるのでしょうか? 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など