1.
x=cosαcosθ
y=cosαsinθ
z=sinα
f(θ,α)=sinα
r=(cosαcosθ,cosαsinθ,sinα)
∂r/∂θ=(-cosαsinθ,cosαcosθ,0)
∂r/∂α=(-sinαcosθ,-sinαsinθ,cosα)
∂r/∂θ×∂r/∂α=
(| cosαcosθ,0 |,| 0,-cosαsinθ|,|-cosαsinθ, cosαcosθ|)
(|-sinαsinθ,cosα|,|cosα,-sinαcosθ|,|-sinαcosθ,-sinαsinθ|)
=(cosθ(cosα)^2,sinθ(cosα)^2,sinαcosα)
|∂r/∂θ×∂r/∂α|=|cosα|
∫_{x^2+y^2+z^2=1,z≧0}zdS
=∫_{θ=0~2π}∫_{α=0~π/2}sinαcosαdαdθ
=π
2.
S:={(x, y, z); x≧0,y≧0,z≧0, 2x+2y+z=2}
面の方程式2x+2y+z=2を
r(x,y)=(x,y,2(1-x-y))
とする
∂r/∂x=(1,0,-2)
∂r/∂y=(0,1,-2)
∂r/∂x×∂r/∂x=
(|0,-2|,|-2,1|,|1,0|)=(2,2,1)
(|1,-2|.|-2,0|.|0,1|)
|∂r/∂x×∂r/∂x|=√(2^2+2^2+1)=3
dS=3dxdy
∫_{S}((1/2)-x-y)dS
=∫_{x=0~1}∫_{y=0~1-x}3((1/2)-x-y)dydx
=∫_{x=0~1}(3x(x-1)/2)dx
=[x^3/2-3x^2/4]_{x=1}
=-1/4
3.
f:=(z, x, y^2), S:={(x, y, z); x^2+y^2=z^2, 0≦z≦1}
x=zcosθ
y=zsinθ
f=(z,zcosθ,z^2(sinθ)^2)
面Sの単位法線ベクトルをnとする
n=(-cosθ,-sinθ,1)/√2
f・n=z(-cosθ-(sin2θ)/2+z(1-cos2θ)/2)/√2
面Sの方程式をr(θ,z)とすると
r(θ,z)=(zcosθ,zsinθ,z)
∂r/∂θ=(-zsinθ,zcosθ,0)
∂r/∂z=(cosθ,sinθ,1)
∂r/∂θ×∂r/∂z=
(|zcosθ,0|,|0,-zsinθ|,|-zsinθ,zcosθ|)
(| sinθ,1|,|1, cosθ|,| cosθ, sinθ|)
=(zcosθ,zsinθ,-z)
|∂r/∂θ×∂r/∂z|=z√2
dS=z√2dzdθ
∫_{S}f・dS
=∫_{θ=0~2π}∫_{z=0~1}(z^2(-cosθ-(sin2θ)/2)+z^3(1-cos2θ)/2)dzdθ
=∫_{θ=0~2π}(-(cosθ)/3-(sin2θ)/6+(1-cos2θ)/8)dθ
=[-sinθ/3-cos2θ/12+θ/8-sin2θ/16]_{θ=0~2π]
=π/4
4.
f:=(z^2, 2x, 2y^2), S:={(x, y, z); x^2+y^2=1, x,y≧0, 0≦z≦1}
x=cosθ
y=sinθ
f=(z^2,2cosθ,2(sinθ)^2)
n=(cosθ,sinθ,0)
f・n=(z^2)cosθ+sin2θ
r=(cosθ,sinθ,z)
∂r/∂θ=(-sinθ,cosθ,0)
∂r/∂z=( 0, 0,1)
∂r/∂θ×∂r/∂z=
(|cosθ,0|,|0,-sinθ|,|-sinθ,cosθ|)
(| 0,1|,|1, 0|,| 0, 0|)
=(cosθ,sinθ,0)
|∂r/∂θ×∂r/∂z|=1
dS=dzdθ
∫_{S}f・dS
=∫_{θ=0~π/2}∫_{z=0~1}((z^2)cosθ+sin2θ)dzdθ
=∫_{θ=0~π/2}((cosθ)/3+sin2θ)dθ
=[(sinθ)/3-cos2θ/2]_{θ=0~π/2}
=1/3+1/2-(-1/2)=5/6+1/2
=4/3