- ベストアンサー
微分 関数の極大、極小について教えてください!
微分 関数の極大、極小について教えてください! y=-x^3+3x^2+9x+4 (-2≦x≦5) 増減表までお願いししたいです。よろしくお願いします。
- みんなの回答 (5)
- 専門家の回答
質問者が選んだベストアンサー
その他の回答 (4)
- debut
- ベストアンサー率56% (913/1604)
回答No.4
y '=-3x^2+6x+9=-3(x^2-2x-3)=-3(x-3)(x+1) y '=0より、x=-1,3 x・・-2・・・-1・・・・3・・・・・5 y '・・-・・0・+・0・-・・ y・・6・↓・-1・↑・31・↓・-1 です。
- 4028
- ベストアンサー率38% (52/136)
回答No.3
xで微分すると y’=3x^2+6x+9 =3(x^2+2x+3) =3{(x+1)^2+2} よって、y’≧0より単調増加なので x=-2のとき最小値 -10 x=5のとき最大値 249 こんなでかい数字でるのは少しおかしいですね・・・ 計算ミスかな? それとも問題文を間違えてませんか? 例えば9xのところがー9xなら極値もでるんですが
- debukuro
- ベストアンサー率19% (3634/18947)
回答No.2
先ず導関数を求めます これに与えられた範囲の数を代入すれば微係数が出ます 三次関数の曲線を思い出してください
noname#112109
回答No.1
xの範囲が指定されているので,極大・極小は最大・最小の誤りですな。とにかく,他力本願は御法度です。