ベストアンサー 軌跡の問題なのですが、作図ができず、また、想像もできません。 2010/02/10 18:32 軌跡の問題なのですが、作図ができず、また、想像もできません。 三角形の重心を中心として、平面上で90°回転してできる三角形 です。 どういう風に書くのでしょうか。教えて下さい。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー naniwacchi ベストアンサー率47% (942/1970) 2010/02/10 18:54 回答No.1 軌跡の問題というよりも、作図の問題という気もしますが。 とにかく、手順を分けて考えれば難しくないと思います。 1) 重心の位置を求める。 重心は「中線の交点」として求まります。 中線とは辺の中点と向かい合う点を結んだ線ですから、辺の中点が求まればよいことがわかります。 辺の中点とは、直線上にあり、「端の 2点から距離の等しい点」として求められますね。 2) 重心と頂点を結ぶ 3) 2)の直線に対する垂線を作図し1/4円(90度)を描けば、移動した頂点の場所を作図できます。 これを 3つの頂点それぞれに対しておこない、最後に結ぶことで三角形が作図されます。 「垂直二等分線」と「垂線」の作図ができれば描けますよ。 質問者 お礼 2010/02/10 22:30 ありがとうございます。 書けました。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 軌跡とその応用問題 軌跡の問題です 座標平面上の2点Q(1,1)、R(2,1/2)に対して、点Pが円x^2+y^2=1の周錠を動くとき、次の問いに答えよ。 (1)△PQRの重心の軌跡を求めよ。 (2)点Pから△PQRの重心までの距離が最小となるとき、点Pの座標を求めよ。 (3)△PQRの面積の最小値を求めよ。 (1)は解けました。 (x-1)^2+{y-(1/2)}^2=1/9:中心(1,1/2)、半径1/3の円 すいませんがお願いします 作図の問題教えてください! △AOBは、角Oを回転の中心として、∠AOBは50度である。 反時計回りに25度回転させた時の△CODを作図せよ。 という問題があって、線OBをOを中心として点Dがあるはずの弧の線までは作図できたのですがその後が分かりません。作図できる道具はコンパス、直線定規で、三角定規、分度器は使うことができません。 明日入試なので誰か回答お願いします。 楕円の軌跡の作図の変形問題 興味深い問題と思いますので、よろしければ少しのお時間をください。 図形の軌跡の問題なのですが、まずは参考図をみてください。 http://nkiso.u-tokai.ac.jp/math/komori/graph/ov.gif 楕円の作図方法として有名です。 2点A(c,0),B(-c,0)がある。 このとき、XA+XB=2a(一定)となる点Xの軌跡は、 b^2=a^2-c^2として、 x^2/a^2 + y^2/b^2 = 1 実際の作図は、2点に画鋲を指し、一定の長さの糸の両端をくくりつけ、えんぴつで糸をピンと張りながら動かしていきます。 僕が考えているのは、次のような拡張です。 2点A(c,0),B(-c,0)がある。 このとき、2XA+XB=2a(一定)となる点Xの軌跡は??? 実際の作図は、2点A,Bに画鋲を指し、一定の長さの糸の一端をAにくくりつけます。 糸をえんぴつXまでもっていき、再びAの画鋲にもどし、また、糸をえんぴつXまでもっていき、最後に他端をBの画鋲にくくりつけます。 つまり、XAの間は糸は2重になっているわけです。 そのような点Xの軌跡はどうなるのでしょうか? 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 軌跡の問題です。 xy平面上の2点(0,0),(0,2)を通り第一象限に中心を持つ円をC1とし、C1とx軸との2交点を通り第四象限に中心を持つ円をC2とする。C1とC2が直交するように変化するとき、C1の中心とC2を結ぶ線分の中点の軌跡を求め、図示せよ。 ただし、2円が直交するとは、2円が交点をもち、その交点における両者の接線が直交することをいう。 この問題が難しくて解けません、誰かとけますか? 軌跡の問題について 軌跡と領域の問題の質問です。 (1)座標平面上で点(0,2)を中心とする半径1の円をCとする。Cに外接しx軸に接する円の中心(a、b)が描く図形の方程式を求めよ。 (2)x^2+y^2-4x-2y+3≦0かつx+3y-3≧0の領域でx+yのとりうる値の範囲をもとめよ。 よろしくお願いします。 ロシアの本の作図の問題(難) 「直線と曲線」というロシアの本の日本語版を読んでいるのですが、次の作図問題があります。 言葉だけで分かりづらくて済みませんが、ペンを持って、図を書いていただければと思います。 大きさの異なる2つの円が2点で交わっている。 一つの交点を通り、この2円から等しい長さを切り取る直線を描きなさい。 作図にはコンパスと定木のみを使います。 2時間ほど考えているのですが、よくわからないのです。 なお、次の事実が参考になるかもしれません。 円がある。円の外に1点Lがある。 円上の点NとLとの中点をMとする。 Mの軌跡を作図せよ。 (その解)Lを中心に円を1/2倍に拡大したもの(円)が、求める軌跡である。 Lから円の中心に直線を引く。その直線と円との交点は当然、円の直径をなす。 その直径の端点を、Lを中心に1/2倍に拡大すれば、それは求める軌跡である円の直径となる。 点の軌跡の問題 一辺 2cm の正方形の中を 1辺 1cm の正三角形が内接した状態で回転するとき、 また元の状態に戻ったときまでに移動した点 Aの軌跡の距離を求めよ。 という問題です。点Aはどんな軌跡を描くのでしょうか。 想像が付きません... この問題の解き方をご存知の方いらっしゃいましたら、ご指導お願いします。 軌跡の問題の解き方教えてください 座標平面上に定点A(6,0)、B(3,3)と円C X²+Y²=9がある。 (1) 点Pが円C上を1周するとき、点A,B,Pを頂点とする三角形△ABPの重心Gの軌跡の方程式を求めてください。 (2) (1)の軌跡上を動く点の座標(X,Y)に対して (ⅰ) X²+Y² の最大値と最小値を求めてください。 (ⅱ) Y-1/X の最大値と最小値を求めてください。 解き方わかる方教えてください。 軌跡の基本 xy平面上に原点O(0,0)を中心とする半径1の円Cとその円周上の点A(1,0) がある。円C上を動く点Pに対して、3点O,A,Pが三角形を作るとき、その三角形の重心をGとする。この時、Gの軌跡を求めよ。 この問題の答えは 円(x-1/3)^2+y^2=1/9 ただし、(0,0)、(2/3、0)を除く なんですが、どうやって除く分の座標を出すのか分かりません。式と説明を入れて教えて下さい。円の方程式は出せました。よろしくお願いします。 数II軌跡の問題 数II軌跡の問題 原点O(0,0)とA(0,1)、円:x^2+y^2=1上の 点P(a,b)を結んでできる三角形OAPの 重心GのをG(x,y)とする。Pが円周上を動くとき 重心Gの描く軌跡を求めよ。 もとめる曲線はわかったと思うのですが、 x,yのおりうる変域がいまいち理解できません。 くわしく教えてください。お願いします。 作図の問題 図について直線l上に中心があって、2点A,Bを通る円を作図せよ という問題です。 楕円の中心の軌跡問題です。 楕円の中心の軌跡問題です。 問題 与えられた三角形の3つの頂点を通るような楕円の中心の軌跡を求めよ。 です。高校の範囲での解答をお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 作図の問題をお手伝いください! 作図の問題をお手伝いください! △ABCにおいて、∠B,∠Cの二等分線とCA,ABとの交点をそれぞれP,Q。内接円とBCの接点をRとします(よってBP,CQの交点が内接円の中心になります)。3点、P,Q,Rのみが与えられているとき、もとの△ABCを作図せよ。という問題です。 軌跡について教えてください!! 軌跡の問題です。 原点を中心とする半径1の円に外接し、直線y=-2に接する円の中心の軌跡を求めよ。 どなたか教えてください(><;) 数学 軌跡の問題です。 数学 軌跡の問題です。 xy平面上に存在する円Cは、その方程式はx^2+y^2=1である。また、点A(3,3)、点B(5,1)があり、線分AB上の点Pは、AB間を動く(両端を含む)。点Pから円Cに引いた2本の接線の、接点同士を結んだ線分の中点Qの軌跡を求めよ。 という問題があります。奇跡の方程式は、なんとかぐちゃぐちゃになりながらも、 (x-(1/12))^2+(y-(1/12))^2=(√2/12)^2 という風になったのですが、(答がないのであっているかは不明。) 点Qが動く範囲が分かりません。 どうやって求めるか教えてください。 (とりあえず原点は不適であることはわかります。) 軌跡の問題です。 1つの小円が8回回転(自転)しつつ大円を1周する。 このとき小円上の一点が描く軌跡は? と言う問題で画像は参考の図です。 外サイクロイドで考えてみましたができませんでした。 何かアドバイスをお願いします。 軌跡の問題です x^2+y^2=1をみたしながらx,yが動くとき、点P(x+y,xy) の軌跡を求めよ。というどの問題集にものっている 問題で、解法はx+y=U xy=Vとおいたりしてx^2+y^2=1 の式を対称式の変形でu^2-2v=1かつ実数条件から判別式でu^2-4v≧0の両方を満たす放物線とする解法が一般的でこれは理解できるのですが、このできるu,vの平面は元のx,y平面と同じなのでしょうか。 どうも問題集を解いていてひっかかるのですっきりさせたいです。 軌跡の問題 円周角の定理を使う軌跡の問題です。∠XOYについては三角定規をイメージしてください。 大きさ30度の∠XOYの内部(OX,OYを含む)に長さ1の正三角形PQRがある。さらに、PはOX上、QはOY上を動きRはPQに関してOと同じ側にある。このときRの軌跡を求めよ。 円周角の定理を使うところまでは分かるのですが、軌跡がOを中心とする半径1の円になり理由が分かりません。解答には当たり前のように書いてありますが、どうか宜しくお願いします。 数学A 平面図形の作図 平面図形で、三角形の重心、外心、外接円、内心、内接円の作図の 仕方が良く分かりません。インターネット上で作図の仕方が載っている サイトを知っている方、または説明できる方教えてください (言葉で説明するのは難しいと思いますが…) 軌跡の問題に関して質問です 座標平面上の半径r(0<r<1)の円盤Dが、原点を中心とする半径1の円に内接しながら滑らずに転がる。そのときのD上の定点Pの動きを調べる。ただし、Dの中心は原点の周りを反時計回りに進むものとする。初めのDの中心とPは、それぞれ(1-r,0)(1-r+a,0)の位置にあるものとする。 (1)Dが長さαだけ転がった位置にきたとき、Pの座標(x,y)をαを用いて表せ。 (2)Dが転がり続けるとき、Pがいつか最初の位置に戻るためのrの条件を求めよ。 (3)r=1/2のとき、点Pの軌跡を求め図示せよ。 (2)、(3)について方針、解答までに何を示せばこの問題を解くことが出来るのか詳しく教えていただけないでしょうか? よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございます。 書けました。