ベストアンサー 「φ⊆X」と「A∪B≠φ」の読み方を教えてください 2010/02/01 02:59 「φ⊆X」と「A∪B≠φ」の読み方を教えてください。(カタカナ読み?) お願いいたします。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー reine1 ベストアンサー率57% (16/28) 2010/02/01 03:52 回答No.1 ファイはエックスの部分集合 エー カップ ビー ノットイコール ファイ ⊆のカタカナ読みは一般的にしません。 英語ではsubsetなので、言い換えることは可能ですが。 質問者 お礼 2010/05/04 01:50 ご回答ありがとうございました!参考にさせていただきます^^ 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A A+2B=2x^2+12x-14、A-2B=-6x^2+14、2A-B A+2B=2x^2+12x-14、A-2B=-6x^2+14、2A-B+C=-4x^2+12x+8とする。 C=ax^2+bx+cとするとき、係数a,b,cを求めよ。 という問題なのですが、私が解くとa=-1、b=-7、c=8になります。 しかし、解答では、a=2、b=3、c=-5です。 分かりやすく教えていただけないでしょうか? よろしくお願いします。 a * x^bとa / x^bは同じ? 奇妙な質問かもしれませんが。。。 f(x) = 480 * x^-0.80 という関数と f(x) = 480 / x^0.80 という関数は同じものですか?(両関数が返す値は同じものであるということが数学的に示せますか?) もう少しいえば f(x) = a * x^b (ただしbは負の値) f’(x) = a’ / x^b’ (ただしbは正の値) という2つの関数があった場合、a = a’、b = b’ならば必ずこの2つの関数は(引数xの値が同じとき)同じ値を返しますか?という質問です。 (a+b)(x+a)(x+b)+abx=0 (a+b)(x+a)(x+b)+abx=0の方程式を解けという問題 このとき、因数分解して(x+a+b){(a+b)x+ab)} となり、場合わけするんですが、その場合わけするときの解説の 条件の質問です 解説には、a+b≠0 a+b=0 ab≠0 a+b=0 ab=0 この三つに場合わけするとかいていますが、 なぜa+b≠0なんですか、a+b≠0 ab=0ではないんですか? 先生は、abが0でも違っても、かわらないといっていましたが abが0ならx=0で、違うなら、x=-ab/a+bですよね。 答えちがいますよね・・。 できれば詳しく教えてください 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム ∫〈x〉=b^x /( a^x+b^x ) (1<a<b) のときlim_ 関数∫(x) = b^x /( a^x+b^x) (1<a<b)のときの lim_(x→∞)∫(x)、lim_(x→-∞)∫(x)求めよ。 関数の記号の入力の仕方が解らなくて間違えているかもしれません。ごめんなさい。よろしくお願いします。手書きですが、問題画像付けました。 lim{(a^x+b^x)/2}^1/x x→0 (a,b>o) この lim{(a^x+b^x)/2}^1/x x→0 (a,b>o) この問題がわかりません。だれか解き方を教えてください。 不等式||||x+a|-b|+a|-b|≦1 xに関する不等式 ||||x+a|-b|+a|-b|≦1 が -1≦x≦1で常に成り立つとき,点 (a,b) の存在する範囲は添付図のようになるのですが, どのようにして導くのでしょうか? ∫(1 - x/a - y/b)dy = -(b/2)(1 - x/a ∫(1 - x/a - y/b)dy = -(b/2)(1 - x/a - y/b)^2 + C これは、ある四面体の三重積分の計算の一部ですが、 どうやって計算したら、こうなるのか分かりません。 普通に計算すると ∫(1 - x/a - y/b)dy = y - xy/a - (y^2)/2b + C = y{1 - x/a - y/2b} + C ですよね? ここから-(b/2)(1 - x/a - y/b)^2 + Cまでの道筋を教えてください。 【問題】∫[(x-1)/{(x-a)(x-b)}]dx (a≠1,b 【問題】∫[(x-1)/{(x-a)(x-b)}]dx (a≠1,b≠1)を計算せよ。 部分分数に分けてみようとしたのですができませんでした^^; どなたかよろしくお願いします。 |(x-a1)/b1|>|(x-a2)/b2|を満たすxの範囲(a1<a2,0<b1<b2) 答えのない過去問研究中です。 数直線から明らかに x>(a1+a2)/2 になりましたが、bが関与していないので不安になりました。合っていますでしょうか? x*ln(x/a)=bについて x*ln(x/a)=bについて 仕事でx*ln(x/a)=bな式が出てきました lnは自然対数、a,bは定数 xについて解く方法ってありますか? もう大学出てウン十年頭が硬くなってしまって全然わかりません 今はエクセルでゴールシークしながらチマチマ解いていますが定数a,bの条件がいろいろあって解かなくてはならなくてちょっと困っています よろしくお願いします f(x)が(x-a)(x-b)で割り切れる⇔... f(x)が(x-a)(x-b)で割り切れる⇔f(a)=f(b)=0 という定理がありますよね これの証明を自分でしようと思ったのですがうまくできませんでした 公式集を見ても、教科書を見ても証明が乗っていなかったので教えてください またこの定理にはa≠bという条件がついていたような気がするのですが (記憶があいまいです) a=bの時には成りたたないのでしょうか? x*e^(-b*x) = aのxの求め方 x*e^(-b*x) = a (a,b:定数,e:ネイピア数)のとき、この式をx=にするにはどうしたらよいでしょうか? どなたかよろしくお願いします 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム a,bは定数とし、a>0とする。関数y=a(x^2+2x+3)^2-2a(x^2+2x+3)+bの-2≦x≦2における最大値は14、最小値は3である。 a,bは定数とし、a>0とする。関数y=a(x^2+2x+3)^2-2a(x^2+2x+3)+bの-2≦x≦2における最大値は14、最小値は3であるとする。このとき、a,bの値を求めよ。 という問題で解法、解釈で分からない部分があります。 以下は解答に沿って自分なりに解釈した結果を書いています。 y=a(x^2+2x+3)^2-2a(x^2+2x+3)+bの-2≦x≦2における最大値は14、最小値は3である・・・(1) ⇒x^2+2x+3=tとおく・・・(2) ⇒y=at^2-2at+bの-2≦x≦2における最大値は14、最小値は3である・・・(3) ⇒-2≦x≦2におけるtの変域を求める・・・(4) ⇒y=at^2-2at+bの2≦t≦11における最大値は14、最小値は3である・・・(5) こう考えると(3)まではいいのですが、(4)からうまく納得できません。 -2≦x≦2だったらtの変域は確かに2≦t≦11なのですが、 そしたらy=at^2-2at+b(2≦t≦11)ですが、元((1))のグラフがどういうものかは分かりませんが、これは元のグラフとは異なっているので、2≦t≦11と求めたは良いものの、y=at^2-2at+bでこの範囲における最大・最小が何故、元の-2≦x≦2における最大・最小の14,3と同じなのかイメージが沸きません。 X=((A*A)+(B*B))/A*2をA=の式に X=((A*A)+(B*B))/A*2をA=の式に変換したいのですが解りません。 どなたか解る方教えてください宜しくお願いいたします。 x^2+a|x-1|+b=0 が異なる2つの実数解をもつとき、 x^2+a|x-1|+b=0 が異なる2つの実数解をもつとき、 (a,b)を図示せよ。 次のように考えましたが、正誤をご指摘ください。 与式は、x^2+ax-a+b=0,またはx^2-ax+a+b=0 実数解をもつから、a^2+4a-4b>0..(1),a^2-4a-4b>0..(2) 2つの実数解より求める条件は(1)かつ(2)でない、(1)でないかつ(2) また、x^2+ax-a+b=0,とx^2-ax+a+b=0が共通解をもつときは、与式は2つの実数解 にならないから求める範囲は(1)かつ(2)でない、(1)でないかつ(2)の部分。 (A∩B)∪(A~∩B) = Bの証明 A~ をAの補集合としたとき、ベン図では自明な (A∩B)∪(A~∩B) = B を論理記号だけで証明しようとしたら、全く同じ命題同士の論理和と論理積 p∨p と p∧p が出てきて、わけがわからなくなりました(笑)。 (A∩B)∪(A~∩B) ⇔ x∈A∧x∈B ∨ ¬x∈A∧x∈B ⇔ ( (x∈A∧x∈B)∨(¬x∈A) ) ∧ ( (x∈A∧x∈B)∨(x∈B) ) ⇔ ( x∈A∨¬x∈A ∧ x∈B∨¬x∈A ) ∧ ( x∈A∨x∈B ∧ x∈B∨x∈B ) ⇔ (x∈A∨¬x∈A)∧(x∈B∨¬x∈A)∧(x∈A∨x∈B)∧(x∈B∨x∈B) 恒真との論理積は不変で、たぶん x∈B∨x∈B ⇔ x∈B としてよいような気がするので ⇔ (x∈B∨¬x∈A)∧(x∈A∨x∈B)∧(x∈B) として続けたのですが、ここから分配律を使って変形しても堂々巡りになってうまくいきません。 どうしたらいいのでしょうか? xの方程式 x^3 -2x^2 +2x -1 = 0 の解を a,b, xの方程式 x^3 -2x^2 +2x -1 = 0 の解を a,b,c とするとき、 a^2 +b^2 +c^2 及び a^3 +b^3 +c^3 の値の求め方を教えてください。 2直線 x/a+y/b=1, x/a+y/b=2(a>0, b>0)の 2直線 x/a+y/b=1, x/a+y/b=2(a>0, b>0)の間の距離を求めよ。 という問題の解説に、 2直線は平行だから、第一の直線上の点(1、0)を通る。よって、ここからbx+ay=2abまでの距離を求める と、ありました。 なぜ(1,0)を通るのですか? 2次方程式 2x^2 - 3x - 4 = 0 の2つの解をA,Bとす 2次方程式 2x^2 - 3x - 4 = 0 の2つの解をA,Bとするとき、次の2つの数を解とする2次方程式を作ってください (1) A + 1 , B + 1 A. 2x^2 - 7x + 1 (2) A^2 , B^2 A. 4x^2 - 25x + 16 自力でやってみたのですが、答えと合いませんでした 途中式などお願いいたします b2-(a-x)=b2-a2+2ax-x2 の中でb2-(a2-2ax+x2)の符号が逆になるというのは教科書のどこに書いてありますか? 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ご回答ありがとうございました!参考にさせていただきます^^