- ベストアンサー
円の軌跡の問題です
途中まで解けるのですが、行き詰まってしまいました。ヒントorアドバイスお願いします。 【問題】 直線x=2 の y>0 の部分を動く点Qから円 x^+y^=1 に2本の接線を引く。2つの接点を結ぶ線分の中点Pの軌跡を求めよ。 [途中式] Q(2,t)とする。 Qから円に引いた接点A(x壱,y壱),B(x弐,y弐)とする。 注)壱・弐は、本当はxの横に、小さい 1や2 を記入して、任意のx座標・y座標を表現したかったのですが、うまく文字で表せなかったので、今回は壱・弐を使用しました。 接点の方程式は x壱x+y壱y=1 x弐x+y弐y=1 2つ接点は共に点Qを通るから 2x壱+ty壱=1 2x弐+ty弐=1 これ以降がさっぱりわかりません。 途中式を細かくいれた説明を教えてください。 ちなみに下記の文章は、上記の解答の続きからの模範解答だそうです。 ・・・2つ接点は共に点Qを通るから 2x壱+ty壱=1 2x弐+ty弐=1 ゆえに、直線ABの方程式は 2x+ty=1・・・[ⅰ] 直線OPの方程式は y=t/2*x・・・[ⅱ] 点Pは直線ABと直線OPの交点である。 《1》x≠0のとき、[ⅱ]から t=2y/x これを[ⅰ]に代入して整理すると 2x^+2y^-x=0 ゆえに (x-1/4)^+y^=1/16 これから x>0 または t=2y/x>0 から y>0 《2》x=0 のとき [ⅱ]から y=0 点(0,0) は直線[ⅰ]上にない。 よって求める軌跡は 答え. 円(x-1/4)^+y^=1/16 の y>0の部分
- みんなの回答 (3)
- 専門家の回答
質問者が選んだベストアンサー
その他の回答 (2)
noname#24477
回答No.3
- nubou
- ベストアンサー率22% (116/506)
回答No.1
お礼
お返事ありがとうございます。 金曜日にテストがあるのでとても助かりました。 非常に詳しい説明感謝します。