ベストアンサー 置換積分の問題 2010/01/04 01:15 ∫1/((2x-√(x^2-3)+3)(√(x^2-3)))dx この問題でt=(x^2-3)^(1/2)とおいて dx=t/(2√(t^2-3))dt としたのですが、これで解けますか? みんなの回答 (3) 専門家の回答 質問者が選んだベストアンサー ベストアンサー inara1 ベストアンサー率78% (652/834) 2010/01/04 10:16 回答No.2 √(x^2 - 3) = x - t とおいて両辺を2乗すれば x^2 - 3 = ( x - t )^2 = x^2 - 2*t*x + t^2 → x = ( t^2 + 3 )/(2*t) したがって dx = ( t^2 - 3 )/(2*t^2)*dt √(x^2 - 3) = ( t^2 + 3 )/(2*t) - t = -( t^2 - 3 )/(2*t) 2*x - √(x^2 - 3) + 3 = 3*( t + 1 )^2/(2*t) となって被積分関数は有理化されます。 一般に、√( a*x^2 + b*x + c ) という形が入っている関数の積分は、<a のとき √( a*x^2 + b*x + c ) = x*√(a) - t とおくことで有理化できます。 大学演習 微分積分学(p.107) http://www.shokabo.co.jp/mybooks/ISBN978-4-7853-8001-4.htm 質問者 お礼 2010/01/04 23:14 わかりやすい回答ありがとうございます。 このやり方で計算してみます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (2) info22 ベストアンサー率55% (2225/4034) 2010/01/04 20:22 回答No.3 #2さんのやり方で少し計算してみると I=∫(8t^4)/(3(t+1)^2*(3-t^2)(t^2-3))dt =∫{2(1-2t)/(t^2-3)+12(t-2)/(t^2-3)^2+4/(t+1)-(2/3)/(t+1)^2} dt =(√3)ln((t-√3)/(t+√3))-2ln(t^2-3)+4ln(t+1)+2(2t-3)/(t^2-3) +(2/3)/(t+1)) +C Cは任意定数,ln(*)は自然対数です。 後、t=x-√(x^2-3)を代入して元の変数tに戻せば 求める積分結果↓になります。 I=(√3)ln(((x-√(x^2-3))-√3)/((x-√(x^2-3))+√3)) -2ln((x-√(x^2-3))^2-3)+4ln(-√(x^2-3)+x+1) +(4(x-√(x^2-3))-6)/((x-√(x^2-3))^2-3)+ (2/3)/(x+1-√(x^2-3)) +C 計算間違いがあるかも知れませんので自分でチェックしてみてください。 質問者 お礼 2010/01/05 00:36 回答ありがとうございます。 早速チェックしてみます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 alice_38 ベストアンサー率43% (75/172) 2010/01/04 01:40 回答No.1 それでは、あまり簡単な式にならない気が。 x = (√3) / cosθ なんか、どうですか? 質問者 お礼 2010/01/04 23:13 やってみます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 数3の置換積分を教えてください。 t=√(x^2+4)など、√の中に2乗が含まれる式を置換したとき、 ルートを外すとt^2=x^2+4などとなりますが、これをdx ⇒dtに変えるとき 2x dx= 2t dtになる理由が分かりません。 このように変形できる理由を教えてください。 ちなみに、 二乗式が含まれない、t=√(4x+3)などが dx⇒dtに変えるときは、x=(t^2-3)/4から、合成関数の微分よりdx = {(t^2-3)/4}' dtとなり dx = t/2 dtになるのは分かります。 置換積分について質問です 次の問題が与えられています。 【問題1】 x√(a+bx^2) (a,bは定数) また、次のように解説されています。 【解説】 √(a+bx^2)=t とおくと、a+bx^2=t^2 よって、dx/dt = t/bx 以上なのですが、自分には、どうしてdx/dt = t/bxになるのかが分かりません。 この部分について、どうしてこのように変化するのか、どなたかご解説願います。 また、合わせて次の問題についてもご回答願いたく存じ上げます。 【問題2】 ∫{1/√(5-x^2)}dxを計算せよ 解説と解答がテキストにはないので、次のように計算を進めてみました。 t=√(5-x^2)とおくと、 (与式)=∫(1/t)*(dx/dt)*dt となります。 ですので、dx/dtを求めようと考えました。 しかし、tはルートが付いています。 とりあえず、二乗してルートを消そうと考えましたが、そうすると今度は、 t^2=|5-x^2| となります。 x^2>5の場合には、t^2=x^2-5となり、x^2<5の場合には、t^2=5-x^2となるものと、場合分けして考えてみようと発想しましたが、しかしここから、dx/dtを求めるにはどうすればよいのか分かりません。 どうやってこの問題を解いていけばよいのでしょうか? どなたか、ご回答をお願い申し上げます。 置換積分の問題 √x/(1+√x)を置換積分で解こうと思うのですが、 √x=tとおいて x=t^2 dx=2tdt 与式=∫t/(1+t)*2tdt=2∫t^2/(1+t)dt ここから先はどのように解けば良いのでしょうか? 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 置換積分法 ∫x(3x-2)^3 dx を(t=3x-2)の置換により、この不定積分を求めます。 x=(1/3)t + (2/3)であるから dx/dt=1/3 それで、 ∫x(3x-2)^3 dx=∫(1/3)(t+2)t^3×(1/3)dt この式変形が分かりません・・・。 「∫f(x)dx=∫f(g(t))g'(t)dt [x=g(t)] の公式を使ってるのかなぁ・・・とも思いつつうえのようには出来ません。 ちなみにdx/dtっていうのはdxをdtで微分しますって意味でしたよね・・・? このdってのは「微分します」ってことでしょうか・・・? いつもあまり意味なく形式的に書いてしまっていたので・・・ おねがいします。 定積分の問題です。 定積分の問題です。 []内に示した置換によって、次の定積分を求めよ。 ∫(0から1)x√(1-x)dx [√(1-x)=t] 次の様に解答したのですが、間違っていたらご指摘いただけたらありがたいです。 √(1-x)=tとおくと、1-x=t^2,x=1-t^2,dx=-2tdt ∫(0から1)x√(1-x)dx=∫(1から0)(1-t^2)×t×(-2t)dt =∫(1から0)(-2t^2+2t^4)dt=∫(0から1)(2t^2-2t^4)dt =[2/3t^3-2/5t^5](0から1)=2/3-2/5=4/15 定積分の問題 ∫_1^2 dx/(x^2-2x+2) と言う問題があり (x^2-2x+2)=(x-1)^2+1 より x-1=t→dx=dt x…1→2 t…0→1 よって ∫_0^1 dt/{(t^2)+1} =[1/1 Tan^-1 t/1](_0^1) =Tan^-1 1 - Tan^-1 0 =π/4 - π/2 =-π/4 となるのですが、答えはπ/4なんです。 どこが違うのでしょうか? 置換積分の公式 置換積分について (1)∫f(x)dx=∫f(g(t))g‘(t)dtただしx=g(t) (2)∫f(g(x))g‘(x)dx=∫f(t)dtただしg(x)=t (1)(2)はどのように使い分けるのでしょうか? 教科書や問題集をこなしてもいまいちわかりません。 置換積分法について 今置換積分を一人寂しく学んでいる者です(´・ω・`) 聞きたいことはいろいろあります(;・∀・) ∫x/(x+2)^2dx があったとしたらx+2をtに置き換えますよね? そうしたらdxをdtに変換するじゃないですか? その変換の仕方がいまいちわかりません>< そもそもdxとはどういう意味かさえ危ないです>< 上の式を計算すると∫t-2/t^2dtになり ∫(1/t-2/t^2)dtになるそうです。 そしたら logltl+2/t+cになると書いてあるのですが、2/t^2を積分したら 6/t^3に自分が積分したらなってしまいました;; どうやったら2/tになるのでしょうか>< あとはtをXに変換して答えになるので問題ないです。 置換積分法について たとえば, ∫(x+1)√(2x+3)dx を計算する場合, t=√(2x+3)とおき, t^2=2x+3 …(*) x=(t^2-3)/2 から, dx/dt=t ∴dx=tdt が導かれ, 置換積分を行うのが高校数学の教科書通りだと思うのですが, (*)からいきなり, 2tdt=2dx とやってよいのでしょうか? つまり, f(t)=g(x) の状態から,xがtの関数であることを利用して両辺tで微分して, f'(t)=g'(x)・dx/dt となり, f'(t)dt=g'(x)dx としてよいのでしょうか? 置換積分の計算 ∫x^2e^2xを求めよ (私の解答) x^2=tとする。 dt/dx=2x⇔dx=dt/2x として、xをtであらわそうとしたのですが、x^2=t⇔x=±√tですから√tか-√tかわかりません。 おしえてください。 それとも両方ともやってみるのでしょうか? 置換積分における置換演算について f(x)に対する積分式について、計算のため、 t^2 = x-5 とおく変数の置換式を立てました。 この時、両辺をtで微分すると、 2t = dx / dt → 2t・dt = dx という変換式ができます。 一方、両辺をxで微分すると、 dt^2 / dx = 1 → dt^2 = dx という変換式ができます。 ここで、dt^2 = t・dtとみなして t・dt = dx という変換式として使っては「いけない」明確な説明は、どのようなものになるでしょうか? (t^2という文字を更に別の文字に置換する必要がありますが、高校の数学教科書ではこのあたりが明確に示されていないようです。) (置換積分の変換式の説明の際、「dx→dt」の置換方法は、合成微分の絡みから、「あたかも分数の掛け算をするように」求められると解説されることがあるようですが、その説明ではこの部分の説明がうまくできません。) よろしくおねがいいたします。 置換積分の途中計算がわかりません ー教科書------------------- (e^x)+1=tとおいて置換積分すると ∫((e^x)+1)' log((e^x)+1)dx =∫(logt)(dt/dx)dx ー------------------- とありましたが、 (e^x)+1=tを全微分すると (e^x)dx=dtより dx=(1/(t-1))dtとなるため ー--------------------- ∫((e^x)+1)' log((e^x)+1)dx =∫t' (logt)(1/(t-1))dt =∫(logt)(1/(t-1))dt ー--------------------- ではないのですか? どこかで私の計算が間違っているのだと思われます。 よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 置換積分 ∫(1→2√2)√(1+x^2)/xdxにおいて、 √(1+x^2)=t とおくと、x^2=t^2-1 、2xdx=2tdt、 dx=t/xdt ここからが質問したい箇所です。dx=t/√(t^2-1)dtが正解なのですが、x^2=t^2-1より、x=±√(t^2-1)にならない理由を説明してください。どなたかお願いします。 定積分の問題です。 I = ∫[-1→1]{(x^2)/(2^x+1)}dx x = -t. dx = -dt. I = -∫[-1→1]{ (t^2)/(2^(-t)+1) }dt = -∫[-1→1]{ (2^t)(t^2)/(2^t)( (2^(-t)+1) ) }dt = -∫[-1→1]{ (2^t)(t^2)/(2^t+1) }dt ここからどうすればいいのでしょう? 定積分の問題です 解答したものの自信がないので すみませんが、わかる方、これでいいか教えてください。 (1)∫{1→2}(2x-3)^3dx 2x-1=tとおく。 dt/dx=2→dx=dt/2 x │1→3 ─┼─── t │1→3 (原式)∫{1→3}t^3*(dt/2)=1/2[t^4/4]{1→3} =1/2(81/4-1/4)=10 (2)∫1/(x(x+1)=log(x)-log(x+1)+C (Cは積分定数) 積分 問題 積分 問題 ∫((x^2+1)^-1)dxについてどのようにして解けば良いでしょうか? x^2+1=tと置換してもdx=(1/2x)dtと(1/2x)が出てくるので・・・ どこかの例題というわけではないのですが、問題の解き方を教えて頂けませんか? 積分 証明 問題 積分 証明 問題 ∫[0~π](x・sinx)dxを求めよ。 I=∫[0~π](x・sinx)dxとおく。 x=π-tとおくと、dx/dt=-1、積分範囲はπ~0 I=∫[π~0](π-t)・sin(π-t)(-dt) =∫[0~π](π-t)・sin(π-t)dt =∫[0~π](π-t)・(sint)dt 2I=∫[0~π](x・sinx)dx+∫[0~π](π-x)・(sinx)dt =∫[0~π]πsinxdx =2π I=π 一点分からない点があります。 ∫[0~π](π-t)・(sint)dt=∫[0~π](π-x)・(sinx)dt について。単純にtをxに置き換えただけだと思いますが、 x=π-tと置換しているのに、t=xと同じ変数を使って再度 置換して良いのでしょうか? 以上、ご回答よろしくお願い致します。 微分・積分 問題 微分・積分 問題 d^2/dx^2(∫[0→x](x-t)f(t)dt)=f(x)を証明せよ。 x・∫[0→x]f(t)dt-∫[0→x]t・f(t)dtとしました。 上の式を積分して、2回微分しようと考えているのですが、 ∫[0→x]t・f(t)dtが分かりません。 d/dx(x・∫[0→x]f(t)dt)-d/dx(∫[0→x]t・f(t)dt)と1回微分して、さらにもう一度微分を行うと、d/dx(∫[0→x]f(t)dt+xf(x)-xf(x)) よって、d/dx(∫[0→x]f(t)dt=f(x) 解き方は合っているでしょうか? ご回答よろしくお願い致します。 置換積分(高校レベルだと思います) ∫(1/((1-x)√(x^2+x+1)))dxを√(x^2+x+1)=t-xと置換して求める。 t=x+(x^2+x+1)^(1/2)から dx/√(x^2+x+1)=2dt/(2t+1)を求め、元の式に入れてみました。 ∫(1/((1-x)√(x^2+x+1)))dx=∫(2/((1-x)(2t+1))dtとなります。 ここから、どう工夫すれば良いものなのでしょうか? アドバイスをいただければありがたいです。よろしくお願いします。 一次無理関数の置換積分が分かりません 1/{x-2√(x-1)}の不定積分を求める問題で、t=√(x-1)とすると、 x=t^2+1、dx=2tdtとなり、∫2t/(t^2-2t+1)dt までは出来たのですが、この先が分かりません。 どなたかお教え下さい。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
わかりやすい回答ありがとうございます。 このやり方で計算してみます。