ベストアンサー sinの積分 2009/10/04 15:02 ∫sin^2(2x)dxをどのように解けばいいかわかりません。 置換積分で解くのでしょうか? みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー inara1 ベストアンサー率78% (652/834) 2009/10/04 15:19 回答No.1 和の公式 cos( a+b ) = cos(a)*cos(b) - sin(a)*sin(b) --- (1) cos( a-b ) = cos(a)*cos(b) + sin(a)*sin(b) --- (2) で、式(2)-式(1)を計算すると cos( a-b ) - cos( a+b ) = 2*sin(a)*sin(b) → sin(a)*sin(b) = { cos( a-b ) - cos( a+b ) }/2 a = b = 2*x とおけば sin^2(2*x) = { 1 - cos( 4*x ) }/2 これで積分できるはずです。 質問者 お礼 2009/10/04 15:38 解けました。 わかりやすいアドバイスありがとうございます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A log(sin)dxの積分について x^2log(sin π(パイ)x)dx [0~1/2]の積分が上手く出来ません。 log(sin π(パイ)x)dx [0~1/2]に関しては置換積分を用いてとくことは出来たので、おそらく同じようにして置換積分を利用してとくと思うのですが・・・ どなたかよろしくお願いします。 (1)∫sin^2dxの不定積分を求めよ (1)∫sin^2dxの不定積分を求めよ (2)x=sintと置換して∫√1-x^2dxの不定積分を求めよ (3)4x(1-x)=1-(2x-1)^2を利用して、 ∫dx/√x(1-x)=∫2dx/√4x-4x^2の不定積分をを求めよ 積分 1/sin^3x 問題 積分 1/sin^3x 問題 ∫{1/(sin x)^3}dxについて 調べた結果、sinx=cos(x-π/2)として、θ=x-π/2と置換する。 ∫{1/(cos(x-π/2))^3}dx (x-π/2)=θとおくと、dθ/dx=1よりdθ=dx ∫{1/(cosθ)^3}dθとなります。 あとは、1/cos^3xの積分と同じで、 1/2(sinθ/cos^2θ)+1/4log(1+sinθ/1-sinθ)+C のθをx-π/2に戻すと、 1/2(sin(x-π/2)/cos^2(x-π/2))+1/4log(1+sin(x-π/2)/1-sin(x-π/2))+C で答えは合っているのでしょうか? cos^2(x-π/2)=sin^2xとしなければいけないのでしょうか? ご回答よろしくお願い致します。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム sinの積分です 以下の式の積分を教えてください。 ∫sin(x)/(sin(x)-A)dx よろしくおねがいします。 sinxcosxの定積分 ∫0からπ/2 (√cosx)*(sin^3x)dx を解きたいのですが、置換積分を使うのか部分積分を使うのかわかりません。 教えてください。 積分の問題 申し訳ないのですが、 ∫(sin x)^2 dx の解き方を教えてほしいです。 部分積分や置換積分で解いても、 なぜか、スッキリ解けなかったので。。 よろしくお願います。 定積分についての質問です。 定積分についての質問です。 問題は ∫(0~1) {Sin^-1 (x)}^2 dx (アークサイン x の2乗) です。 部分積分も置換積分も通用しません! 解る方よろしくお願いします。 広義積分の求め方 ∫1/(√sin(x))dx 区間[0,π] の広義積分が求められません。 lim a -> 0 lim b -> π として√sin(x)をtとして置換積分してやろうとしたのですが いまいちそのあとの積分区間がわからなくなったりして 解き方がわかりません。教えてください。 置換積分の質問です。 置換積分の質問です。 π π ∫ xsinx/(1+sin^2x)dx=π/2∫ sinx/(1+sin^2x)dx 0 0 を示せ、という問題なのですが解答にx=πーtとおく、と書いてありました これはどのように考えれば良いのでしょうか? sin(π/2)x^2をxで積分したい sin(π/2)x^2の積分をしたいのですが、x^2の処理がわかりません。 置換積分ではないようなので部分積分なのかなとは思うのですが。 どなたか教えていただきたいです。 置換積分 おそらくは置換積分の問題だと思うのですが、 ∫x/(1+x^4)dx (積分範囲[0,1]) をどう置換していいかわからないのです。 1+x^2の形はtanθ、1-x^2の置換はsinθで置くというのは定石ですが、このように次数が大きい場合はどうすればよいのでしょうか。 部分分数展開も分母が1+x^4では使いにくいですし、なにかよい方法があれば教えていただきたいです。 よろしくおねがいします。 ∫cos(x)sin(x)dx を置換積分したいんですが ∫cos(x)sin(x)dx を置換積分したいんですが どうも答えが一致しません。 t=sin(x) dt/dx = cos(x) ∴dt=cos(x)dx ∫cos(x)sin(x)dx =∫t dt =(1/2)t^2 =(1/2)sin(x)^2 + C 答えは -(1/2) cos(x)^2 + C となるはずなんです。 どこで間違ったのでしょうか? 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 積分の問題 積分でわからない問題があります. (1)∫1/(a-sin x)dx (a>1) (2)∫[0,1](arcsin x)/√(1-x) dx (1)はsinx=tなどと置換してみましたが,複雑な式が出てくるばかりで解答の糸口が見えませんでした. (2)は部分積分によって出てきた項(1/{(1-x)√(1+x)})が積分できません.また,積分後もどのように解いていけばよいのかが不明です. アドバイスをお願いします. 不定積分 ∫√(x^2-2)dx (1)部分積分で、x√(x^2-2)-∫x^2/√(x^2-2)dx この後進まず。 (2)置換積分で考えました ア 三角関数でxを置き換え替えようとしましたが、sin,cos,tanいずれもダメなように思う イ 他はあるのか 方針が分かればいいので、よろしくお願いします。 定積分 ∫[1→2](sinπx)^2dx この問題なんですが、置換積分を用いて t=πxとおいて dx=dt/π tの範囲は[π→2π] ∴∫[π→2π](1/π)(sint)^2dt =(1/π)∫[π→2π](sint)^2dt =(1/π)[(1/3cost)(sint)^3][π→2π] =0 ってなったんですが答えは1/2でした。 どうすればいいでしょうか? 積分の証明 ∫{1/√(x^2+A)}dx = log|x+√(x^2+A)| の証明をしようとしています。 x=tanθと置いて、置換積分をすると、 ∫secθ dθ となりました。 ∫{cosθ/(1-(sinθ)^2)}dθ と変形して、t=sinθと置いて、置換積分をしたら、 1/2*log{(t+1)/(t-1)} になりました。 しかし、変数をtからxにできないで困っています。 どうか、アドバイスをお願いします。 定積分の置換積分について 定積分の置換積分について 分からないところがあるのでよろしくお願いします。 下の画像の定積分の問題なのですが、置換積分のところです。 ここでぼくは、 x = 2sinΘ とおいて考えたのですが、これに置換積分の公式を使って解こうとすると、 x = √3 のときの Θ の値は π / 3 か 2π / 3 のどちらを取ればいいのか分かりません・・。 この Θ の値を決定するための条件のようなものが他にあるのでしょうか? それとも、 x = 2sinΘ と置いて置換しようとするのが間違っているのでしょうか・・? できれば、正答とその過程も合わせて教えてほしいです。 よろしくお願いします。 ∫(cosx/(sin^2x+4))dxの解き方 ∫(cosx/(sin^2x+4))dx この問題はt=sin^2x+4とおいて、置換積分で解けますか? 解いた結果、-sinx/(3sin^2x+4)になったのですがあっているのでしょうか? ∮[-1→1]√(4-x^2)dxでx=2sin( ∮[-1→1]√(4-x^2)dxでx=2sin(t)に置換した後のtの積分区間が分からないので教えて下さい。よろしくお願いします。 積分について 写真に添付している積分の問題を解いてほしいです. 極力,詳細な回答がほしいです. 回答できる問題のみの回答でも構いません. よろしくお願いします. 一応こちらにも問題を書きます. 次の積分を( )内の置換を利用して行え. 1. ∫( dx / ( (x^2-1)^3) ) ( (x-1) / (x+1) = t ) ( )内の置換によって,次の関数を積分せよ. 2. 1 / ( (x+5) √(x^2+x+1) ) ( x + (1/2) = (√3/2)tan t ) ( √(x^2+x+1) = x + t ) 3. ( 4-x^2)^(-3/2) ( x = 2sinθ ) ( (2-x)/(2+x) = t ) 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
解けました。 わかりやすいアドバイスありがとうございます。