- 締切済み
相関のある正規乱数
相関のある正規乱数ってどんなかんじの乱数でしょうか? それとどうやって作成できますでしょうか? だれが教えてください
- みんなの回答 (4)
- 専門家の回答
みんなの回答
- ssuzuki
- ベストアンサー率0% (0/0)
2つの正規乱数の場合について説明します。 確率変数 X1,X2 はそれぞれ正規分布 N(m, s^2) に従っているけども、それらの変数はてんで勝手に変動するのではなく、お互いに関連しあいながら変動している。その関連度合いを「相関係数」ρで表します。ρは -1 から 1までの値で、ρ=0の場合が相関なしです。 まぁここまでは教科書にも書いてあるでしょう。 http://www.ntrand.com/jp/normal-distribution-multi/ の上の方にある Flash を試してみてください。相関のあるなしで乱数がどんな様子になるかが良くわかると思います。 3つ以上の相関正規乱数も考え方は同じです。ただ確率変数のペアが増えるだけです。
- numtech
- ベストアンサー率0% (0/0)
2つの確率変数 X, Y があって,それぞれが正規分布に従っている. X~N(0,1), Y~N(0,1) しかも,これらの変数は相関がある E[XY] = ρ(ρ は相関係数) こういう条件の乱数 X, Y を生成したい,ということでしょうか. ========================================== Q1)どんなかんじの乱数か A1)相関があるとは,X と Y が独立ではないということで,X の値と Y の値に関連があるということです. http://econom01.cc.sophia.ac.jp/sda/binormal.htm の 6.2 節の図を見てください. 左図は相関が無い ( ρ = 0 )場合です.この場合,X の値によらず,Y は常に 0 を中心とした分布になっています. 右図は相関係数が 0.8 の場合です.X が正の値の場合, Y の分布は正の値になりやすい(Y の分布の中心が正に移動している)ということが分かります. X = x の値となったとき,Y は Y = rx を中心とした正規分布になります. 例えば,X = 2 に注目すると,Y の分布は Y = 1.6 を中心とした正規分布をなしていて,ほとんどが正の値になっています. Q2) どうやって作成するか A2) 2変数の場合は簡単で,まず2つの独立な正規乱数 X と Z を生成します. X~N(0,1), Z~N(0,1) こうして得られた X と Z から, Y = ρ X + (√1-ρ^2) Z として Y を作ると,Y は Y~N(0,1) となって,しかも E[XY] = ρ が示されます. 変数の数が n(>2) の場合は相関の情報は各確率変数間のものが必要となり,それは相関行列 と呼ばれる (n x n)行列となります. 任意の多変量相関正規乱数を生成するには,行列の分解(コレスキー法など)の技術が必要で簡単ではありません. http://www.ntrand.com/download/ から Excel 用に乱数生成アドインソフトがダウンロードできます.これをインストールすると,Excel で正規乱数や任意の多変量相関正規乱数が生成できます (NTRANDMULTINORM 関数).
- gef00675
- ベストアンサー率56% (57/100)
ARMAモデルのことを聞いているのかもしれんなあ。 Z(1),Z(2),...を独立な正規確率変数として、 X(n)=a*X(n-1)+b*X(n-2)+Z(n) のような数列を作ってみると、X(n)は正規分布で、 X(n)とX(n-1)は相関をもっている。
- chiezo2005
- ベストアンサー率41% (634/1537)
相関のある正規乱数という意味がいまいちわかりませんが, http://econom01.cc.sophia.ac.jp/sda/binormal.htm なものを言っていますか? 一様乱数からさまざまな分布の乱数を生成する方法としては http://cse.naro.affrc.go.jp/takezawa/r-tips/r/60.html などに詳しく書いてあります。