ベストアンサー 三角関数の方程式ですが 2008/05/14 18:06 3cos(3x)+4.5cos(9x)+15cos(15x+50)=0 という方程式のxの値を求めることはできますか? もし求めることができるなら方法を教えていただけるとうれしいです。 よろしくお願いします。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー info22 ベストアンサー率55% (2225/4034) 2008/05/14 19:17 回答No.1 解析的に求めること(理論的な厳密解を求めること)は無理ですね。 数値計算的には可能です。 左辺=f(x)とおくとf(x)は周期T=2π/3の周期関数で、y=f(x)をプロットすると1周期中にx軸(y=0)と10個の点で交わります。 つまり|x|<π/3にf(x)=0が10個の解を持つということです。 ニュートン=ラプソン法を使えば10個の解が求められますね。 ニュートン=ラプソン法における個々の解を求めるための初期値はy=f(x)のグラフから拾えばいいですね。 たとえば,初期値(ラジアン)として -0.9,-0.7,-0.5,-0.3,-0.1,0.15,0.35,0.55,0.75,0.95 の10個を使えばいいでしょう。 質問者 お礼 2008/05/14 21:06 ありがとうございます! 参考になりました! 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 三角関数を含む二次方程式の解き方。 一生懸命調べたのですが、自力では解決出来なかったので、数学の得意な方、よろしかったらご協力をお願いします。 0°≦θ180°において、Xの2次方程式 X^2 - 2x sinθ + cos^2θ = 0 が実数解をもつという。このとき、 ○○/√○ ≦cosθ≦ ○/√○ であり、 ○○° ≦θ≦○○○である。 解説を詳しく書いて下さると、大変助かります。 三角関数・方程式 度々質問すみません。 高2なりたての者です。 三角方程式(関数?)の問題です。 0°≦ x ≦360°のとき y=sinxとy=2cos3xのグラフより、方程式sinx=2cos3xは ■個の解を持つことがわかる。 この■に当てはまるのを答える問題なのですが、 意味がよくわかりません; y=sinxとy=2cos3xのグラフを書いて 交わるところが解なのでしょうか? この問題に関係している前の部分の問題では y=2cos3xの周期のうち正で最小のものは■°である。 0°≦ x ≦360°のときy=2cos3xにおいてy=2となるxは■個、 y=-2となるxは■個ある。 という問題があります。 この3つは (1)2π×1/3=2π/3=120° (2)4個(グラフを書いて求めました) (3)3個(グラフを書いて求めました) と解けたのですが、 sinx=2cos3xのときの解の個数というのが よく意味がわかりません; 考え方やアドバイスをいただけると嬉しいです; 宜しくお願いします。 三角関数を含む方程式 0≦θ<2πのとき cos(θ+π/4)=√3/2 の方程式を満たすθの値を求めよ。 という問題がわかりません。 θ+π/4=aとおき、π/4≦a<9π/4でcosa=π/6,5π/6 となるところまで分かったのですが、そこからどうしたら いいのか分かりません。 答えはθ=19π/12,23π/12です。 教えてくださいッ! 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 三角関数の方程式 「0≦x<2πの範囲で、以下の方程式の解を求めよ。 (1) sin^3x+cos^3x=1 (2) sin^3x+cos^3x+sinx=2」 という問題について質問です。 (2)は(1)の結果を利用して解く問題ですか? 解が三角関数で表される2次方程式 解が三角関数で表される2次方程式 aを正の定数とし、Θを0<=Θ<πを満たす角とする。このとき、2次方程式2x^2-2(2a-1)x-a=0の2つの解がsinΘ,cosΘであるという。a,sinΘcosΘであるという。 a,sinΘ,cosΘの値をそれぞれ求めよ。 与えられた2次方程式に対し、解と係数の関係からsinΘ+cosΘ=2a-1・・・・(1) sinΘcosΘ=-a/2・・・・・(2) (1)の両辺を2乗すると,sin^2Θ+cos^2Θ=1であるから1+2sinΘcosΘ=(2a-1)^2 これに(2)を代入して整理すると a(4a-3)=0 a>0であるからa=3/4 教えてほしいところ sinΘやcosΘは取り得る範囲が決まっていますよね??? よって、sinΘ+cosΘ=2a-1・・・・(1) sinΘcosΘ=-a/2とおいた時点でaの取り得る範囲が制限されるはずです。 よってa>0という条件に加えてさらにaの取り得る範囲は狭まるはずです。 ふつうの方程式のように解けば当然、そのようなことは考慮に入れていません。ですので、範囲の確認が必要なはず。 なのになぜ、a>0という条件しか確認しないんでしょうか??? 三角関数を含んだ連立方程式の解き方について 三角関数を含んだ連立方程式の解き方について 連立方程式、 1-2*cos(3*x)+2*cos(3*y)=0 1-2*cos(5*x)+2*cos(5*y)=0 でxとyを求めるというものです。 解答はx=23.62°y=33.30°となっていますが、途中式が全て省略されています。 三角関数の入った連立方程式を初めて見たもので、 何らかの三角関数の公式を使うと思うのですが、いい解法が思いつきません。 どのようにして解を導けばよいのでしょうか? よろしくお願いします。 三角関数の方程式 三角関数の方程式 0≦x<2πで 2cos2x+4sinx-3 を解けなんですけど、まったくわかりません。 どうか教えてください。 ちなみに高校2年生の数学2の範囲です。 三角比の二次方程式なんですが・・・。 三角比の二次方程式の問題なのですがどうしても解けなくて・・・。(泣) xの二次方程式(1-cosθ)x2+4(sin2θ)x+1+cosθ=0がただ一つの実数解を持つようなθの値と、その時の解を求めよ。ただし、0°≦θ<360°とする。 上記のような問題なのですが・・・どなたか教えて頂けませんか?(涙) 二乗の部分は文字の後に2って普通に打っちゃいましたすみません・・・;; 三角関数の問題です。 三角関数の問題です。 2次方程式 5x^2-7x+k=0 の2つの解が、sinΘ、cosΘであるとき、 定数k の値と sin^3Θ+cos^3Θの値を求めよ。 です。 「sinΘ+cosΘ=7/5」 「sinΘcosΘ=k/5」 を使って計算するらしいのですが、 この2つの式はどうやって求めたのでしょうか? 三角方程式 方程式sin(x)-cos(x)=4sin(x)cos^2(x)を解け、 なのですが、 方向性が見つけられません。 sin(x)-cos(x)=t でうまくいくかと思ったのですが、 cos^2(x)が邪魔です。 よろしくお願いします。 三角関数を含む方程式 Xtan(A+atan(B/(C+X))=B という方程式でXの値を求めることが出来るでしょうか? 三角方程式・不等式 0≦θ<2πのとき、次の方程式、不等式を満たすθの値、またはθの値の範囲を求めよ。 (1)tan∧2θ=tanθ (2)cos(θ+π/3)=√3/2 (3)2cos∧2θ<cosθ (4)sin(θ-2π/3)<0 教えてください。 お願いします(;_;) 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 三角関数 連立方程式 sin(x+y)=sinx-siny・・・1 cos(x+y)=cosx-cosy・・・2 1,2の連立方程式を解く問題なのですが、解答が 1・・・2sin{(x+y)/2}cos{(x+y)/2}=2cos{(x+y)/2}sin{(x-y)/2} 2・・・1-2[sin{(x+y)/2}]^2=-2sin{(x+y)/2}sin{(x-y)/2} と2倍角の公式や和積公式で変形してあり、ここまではわかるのですが、 この2式からcos{(x+y)/2}=0が得られる。となっています。ところがその途中の計算方法がわからないのです。 それで最後の答えがx=±2π/3+2mπ、y=±π/3+2nπとなっています。 回答いただければ幸いです。よろしくお願いします 三角関数の方程式 三角関数の方程式 cos2θ=sinθ+cosθ がどうしても解けません。 cos2θ=cosθ^2-sinθ^2を使うのでしょうか? なにぶん55歳で独学で数学をやっておりますので誰にも聞くことが出来ませんなにとぞよろしくお願いします。 三角関数 aを実数とする。 θ に関する方程式 2cos 2θ + 2cos θ + a = 0 について ( 1 ) t = cos θ として、この方程式を t と a で表せ。 ( 2 ) この方程式が解 θ を、 0 ≦ θ < 2 π の範囲で4つもつための、aのとり得る値の範囲を求めよ。 ( 1 ) 2 cos 2θ + 2cos θ + a = 0 4 cos^2 θ + 2 cos θ + a - 2 = 0 t = cos θ とおいて 4t^2 + 2t + a - 2 = 0 ( 2 ) ( 1 ) より a = - 4t^2 - 2t + 2 として、y = - 4t^2 - 2t + 2 と y = a の共有点が | t | < 1 に2つ ( 異なる ) 存在するような a を求めればよい。 ・・・・・・・★ y = - 4t^2 - 2t + 2 = - 4 ( t + 1/4 )^2 + 9/4 よって、求める a は 0 < a < 9/4 これの ( 2 ) の 「 この方程式が解 θ を、 0 ≦ θ < 2 π の範囲で4つもつための、aのとり得る値の範囲 」を求めるのに、 ★の 「 y = a の共有点が | t | < 1 に2つ ( 異なる ) 存在するような a を求めればよい。」になるのでしょうか? なぜ4つ求めるのに 2つでいいんですか?教えてください。 問題文が 2 cos 2 θ だからですか。。。? 三角方程式 の問題で分からないのがあります。 次の三角方程式を解け 2cos^2(x+30°)+sin(60°-x)=0 (0°≦x≦90°) 参考書の解説によると、 θ=x+30°とおくと、 60°-x = 90°-(x+30°) = 90°-θ ってなってるんですけど、ここの部分の意味がわかりません! どなたかわかりやすく解説お願いします! 数学IIの問題・三角関数 xの2次方程式、x^2-2xsinθ-3cosθ/2=0の2つのがともに正になるθの値の範囲を求めよ。ただし、0≦θ<2πとする f(x)=(x-sinθ)^2-sinθ^2-3cosθ/2として、2つの解が正になればよいので、軸>0、f(0)>0、f(sinθ)≦0という所まで解きましたが、その後がさっぱり進みません。計算方法と解答を宜しくお願いします。 三角関数の問題について 「a,cを実数とし、関数f(x)=√3sinx+2cos²x/2, g (x)=x²-2ax+1を考える。また、方程式 f(x)=cが0≦x≦πで異なる2つの解をもつようなcの値の範囲を求めよ。また、方程式 g(f (x))=0が0≦x≦πで異なる3つの解をもつようなaの値の範囲を求めよ。」 この問題の解答(解き方)が分からなくて困っています。是非教えてください。よろしくお願いします。 ちなみにこの問題は2011年度の南山大学の入試問題です。 三角関数の方程式 y=x+√(3)*sin(x)-cos(x) 0<=x<=2π のときの微分係数が0になるxを求めたい。 y'=1+√(3)*cos(x)+sin(x) y'=0 より 1+√(3)*cos(x)+sin(x)=0 ---(1) (1)を解くのに cos^2(x)+sin^2(x)=1 を使って sin(x)=√(1-co^2(x))を代入して求めたら x=π/2,3π/2,5π/6,7π/6 が得られたのですが、π/2と7π/6は y'が0になりません。 定義域の関係なのかよくわかりません。 なぜ得られたπ/2と7π/6をy'の式に代入したら0にならないか教えて下さい。 三角関数の問題なのですが・・・ 三角関数の問題なのですが・・・ cosα+cosβ=1/2,sinα+sinβ=1/3のとき、 (1)cos(α-β)の値を求めよ。 (2)cos2x+cos2y=2cos(x+y)cos(x-y) が成り立つことを示せ。 (3)cos(α+β)の値を求めよ。 加法定理を使うというのはわかるのですが、それをどう使えば値が出るのかわかりません。 解き方だけでも教えてください。お願いします! 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
ありがとうございます! 参考になりました!