ベストアンサー 全微分 2002/10/23 23:13 全微分の問題で d(xy)およびd(y/x)を計算せよ。 とあるのですが、問題文がこれだけで答えは出るのでしょうか? アドバイスを下さい。 よろしくお願いします。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー uyama33 ベストアンサー率30% (137/450) 2002/10/23 23:20 回答No.1 d(xy) =ydx + xdy ではないでしょうか。 df(x,y) = (∂f/dx)dx + (∂f/dy)dy だったような気がします。 質問者 お礼 2002/10/23 23:35 早速の回答、有難うございます。 自分の勘違いに気付きました^^; 簡単でした…; 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 微分積分(重心、微分方程式)の解き方について 質問を、失礼します。 試験勉強で問題を解いていますが、以下の問題の解き方が分かりません。アドバイスでも良いので、教えていただければありがたいです。 (1)重心 曲線 √(X)+√(Y)=1 と、X軸、Y軸とで囲まれる図形の重心をもとめよ。(答え: ( (1/5),(1/5) ) ) 私は X=Y, Y=(1-X)^2 として計算しましたが答えを導くことができませんでした。 (2)微分方程式 微分方程式 (1-X^2)y′′-2XY′+12Y =0 の解で、初期条件「X=0のとき Y=0 ,Y′=-(3/2) 」を満たす解を求めよ。(答え:Y=-(3/2)X+(5/2)X ) 私は、べき級数を用いて、係数を決めて解こうとしましたが、答えを導くことが、できませんでした。 以上です。よろしくお願いします。 再掲【分数の偏微分】に関する質問 何度も質問して恐縮です。 【分数の偏微分】 f(x、y)=1/(xy) x^2で偏微分せよという問題なのですが、答えは -1/(2x^3y) になるようなのですが、そこまでの計算過程がイマイチ分かりません。 計算過程と高校、大学で習った※※を使う等、優しく教えて頂けないでしょうか? よろしくお願い致します。 微分で同型出現 高校3年です 先日、 2x^2-3xy+2y^2=kのときd^2y/dx^2を求めよ という問題を解き 答えが 14(2x^2-3xy+2y^2)/(3x-4y)^3 となりました なぜ2x^2-3xy+2y^2を二回微分すると 同じ形の2x^2-3xy+2y^2という式が出てくるのですか? 数学的に意味があるのでしょうか? さらにこれは一般的にいえることなのでしょうか? とても興味があることなので 高校生にもわかるような簡単な説明をどなたかしていただけませんか? よろしくお願いします 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 偏微分の計算について 偏微分について学んでいます。 微分したい文字以外は係数とおいて計算するまではわかりました。 しかし以下のような偏微分の計算の仕方について困ってます。 「z=x^2+y^2+2xyの2変数関数についてx,yのそれぞれで偏微分せよ。」という問題で、 ∂z/∂x=2x+2y、∂z/∂y=2y+2x ∂^2 z/∂x^2=2、∂^2 z/∂y^2=2 という計算まではできるのですが、 「∂^2 z/∂x∂y=2」「∂^2 z/∂y∂x=2」となる意味がよくわかりません。 ∂^2 z/∂x∂y=2、∂^2 z/∂y∂x=2という答えを導くには 上の4つの ∂z/∂x=2x+2y、∂z/∂y=2y+2x ∂^2 z/∂x^2=2、∂^2 z/∂y^2=2 のどれを使って、どう計算すればいいのでしょうか? よろしくお願いします。 微分の問題で困ってます ある問題で下のような計算で困ってます。 (6x^2+2xy-y^2)dx+(x^2-2xy)dy =d(2x^3)+d(x^2*y)-x^2dy-d(xy^2)+2xydy+(x^2-2xy)dy =d(2x^3)+d(x^2y)-d(xy^2) =d(2x^3+x^2*y-xy^2) 学習した範囲は高校までで大学の範囲(?)の問題を勉強しています。 一行目から二行目、二行目から三行目でどのような計算を行っているのかわかりません。 解答にはとくに注意書きもないので大学で当たり前の内容もしくは高校の内容で私が学んでないだけと思われます。 理解できるためのアドバイスやサイトを教えて下さい。 微分について質問です。 数学IIIでの質問です。 次の式からdy/dxをx及びyを用いて表せ xy=10 という問題なのですが自分は最初、 y=10/xとし dy/dx=10・(-1)/x*2 dy/dx=-10/x*2 これが答えだと思ったのですが回答は 1・y+x・dy/dx=0 dy/dx=-y/x となっています。 これは積の微分公式を使ったということなんですが xyを微分するときでも使えるんですか? それとこのxyを微分するとyになると思うんですがなぜ積の微分公式を使うのですか? 回答お願いします。 数III 微分の問題 xy=2について、dy/dxをx,yを用いて表せ。という問題なのですが <自分の答え> y≠0のとき、 x=2/y この両辺をxで微分すると 1=(d/dx)(2/y) 1=(dy/dx)(-2/y^2) ∴dy/dx=-(y^2/2) <模範解答> 両辺をxで微分すると y+(dy/dx)x=0 よって、x≠0のとき dy/dx=-(y/x) というように解答が違います。 でもxy=2から、x≠0のときy=2/xであることは明らかですから、 -(y^2/2)=-{y(2/x)/2}=-(y/x) となりますよね? この場合<自分の答え>も正解ですか? 偏微分について 偏微分をする問題で、自分でやってみたのですがきれいな式が出なくてこれで合っているのか…。 助言をおねがいします。 f(x,y)={(x^2)y}/{(x^2)+(y^2)} ただし、(x,y)≠(0,0) 答 ∂f/∂x=2xy/{(x^2)+(y^2)}-{2(x^3)y}/{(x^2)+(y^2)}^2 ∂f/∂y=x^2/{(x^2)+(y^2)}-2(x^2)(y^2)/{(x^2)+(y^2)}^2 これであってますか? ちなみにこれって、最終的には(∂^2)f(0,0)/∂x∂y , (∂^2)f(0,0)/∂y∂x を求める問題なのですが、私の計算だとどちらも0になっちゃうのですが…。 微分について 2x+xyをyで偏微分すると 2x+x・1・y1-1=3xだと思ったのですが答えは「x」と書いてあります。どうしてもわからなくて困っています。 わかる方がいたらご教授お願いいたします。 微分についての質問です x^2+y^2=1について(d^2)y/dx^2をもとめよ なんですが 解答は 2x+2ydy/dx=0 dy/dx=-x/y さらに両辺をxについて微分すると (d^2)y/dx^2=(xy'-x'y)/y^2=-1/y^3 だったんですが 私はdy/dx=-x/y さらに両辺をxについて微分すると (d/dx)・(dy/dx)=(d/dx)-x/y で(d^2)y/dx^2=-1/yだと思うんですが yについて微分しないと(xy'-x'y)/y^2にならないとおもうんですがどうしてこのようになるんでしょうか? 偏微分に関する質問です。 偏微分に関する質問です。 f(x、y)=x^2+xy+y^2 通常の問題だとxやyで偏微分しろという問題が出題されますが、x^2で偏微分せよという問題は存在しますか?その場合、xyのxの取扱いを教えて下さい。 微分方程式 微分方程式というものだったか x^2dy/dx -y^2 =xyを解け 答えx=ce^(-x/y) という問題なのですが ce?などなぜ出てくるのかがさっぱりわかりません。 勉強不足なだけでしょうか・・; なぜこのような答えになるかわかる方、 教えていただけないでしょうか 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 微分 例えばxについての微分で(xy)´ならば、答えは y+xdy/dxですか? 偏微分(?)について すべての実数xについて微分可能な関数f(x)において f(x+y)=f(x)+f(y)+xy…(A) f'(0)=1 (1)f(0)の値を求めよ。 (2)f(x)を求めよ。 という問題ですが、(1)はいいとして、(2)で計算していくときに普通にやるならば導関数の定義に持ち込むことになると思います。ただこのタイプの問題としてはもちろん毎回違う形で関数が与えられますから、式変形の最中にどうすればいいか止まってしまうこともありえます。 ところが、この問題の場合すべてのxにおいて微分可能が保障されているので「(A)において、xを固定し、yで微分する」というやり方(多分これが偏微分だと思うのですが...)を用いるとすぐに解けますし、迷う箇所もありません。 これは予備校で教わったのですが、もちろん教科書には書かれていません。確かに(x+y)^2=x^2+2xy+y^2に対してこれと同じ事をおこなうと、両辺等しくなり等号は成り立ちます。つまり恒等式であり続けます。しかしこの解法について根本的に理解したとは思えませんし、教科書にないようなこういう解答は許されるのでしょうか? 微分方程式について こんにちは。 今、独学で微分方程式の勉強を行っているのですが、問題集に載っていた下記の問題の解き方が分からず困っています。 ・(2y+3xy^2)dx+(2x+4x^2y^2)dy=0の一般解を求める 完全微分方程式ではないので、積分因子を求める必要があり、u=x^mt^nと仮定して求めようとしたのですが、途中で、n-m=4x^2 3n-4ym=-6 という式が出てきてしまい、計算が出来ません。 ・(y^2+2ye^x)dx+(2y+e^x)dy=0,y(0)=1 2変数の初期値問題はどのように解けば良いのでしょうか? 何度も解いてみたのですが、答えを求める事は出来ませんでした。 少しでもアドバイスを頂ければ幸いです。 微分方程式の解き方 微分方程式の問題 y'-xy=x について、答えに至るまでの過程を教えてください。 解答例はCexp2^(-1)・X^2 -1です。 お願いします。 微分方程式についてわからないことが・・・ 今 y'=-1/xy の微分方程式をときました。 ∫y dy=∫-x dx 1/2×y^2=-log|x|+C =-log{Cx{ e^(1/2×y^2)=-|Cx| =Cx これを微分方程式の解とします。 これを微分して与式になることを確認したいのですが 答えの両辺をxで微分して ye^(1/2×y^2)×y'=C 両辺にxかけて xyy'e(1/2×y^2)=Cx =e^(1/2×y^2) よってy'=1/xy となり-がでてきません。 計算途中でC=±Cとしているので符号がおかしくなるのはわかりますが、確認の際は勝手にそれを考慮して-をつけてもいいのでしょうか? どのように解答をかいていけばいいのでしょうか? わかるかたお願いします。 微分 微分の課題に取り組んでるのですが、行き詰まってしまい、果たしてこれでいいのか?と悩んでいます。 教えて頂けると助かります。 以下3問、微分するのですが、答えがこれでいいのか不安です。 1)y=(2x+3)/(x^2+1)を微分して、 これが、y\'=-2(2x^2+3x-1)/(x^2+1)^2まで計算できたのですが、これで終わって良いのでしょうか? 2)y=1/(1+cosx)を微分するのですが、これも y\'=sinx/(1+cosx)^2までで止まってしまいます。 3)y=√1+x^2 を微分(ルートの中は1+x^2です) 初歩的な問題でお恥ずかしいのですが、参考書等を見て自分なり考えてもなかなか解けません。周りに数学得意な人もいなく困ってます。宜しくお願いします。 微分方程式の問題 微分方程式の問題について x^2y''+2xy'=1 の解き方がどうしても分かりません。 問題の答えに至るまでの過程を教えてください。 解答例はy=log|x|+c/x +c'です。 微分方程式 (y-x)y’=y+x この微分方程式の一般解の求め方を教えてください。よろしくお願いします。 答えは x^2+2xy-y^2=C です。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
早速の回答、有難うございます。 自分の勘違いに気付きました^^; 簡単でした…;