- 締切済み
数Aを教えてください。
8個の数字2、3、3、4、4、4、5、7がある。 この8個の数字から3個の数字を取り出し、それをa、b、cとして2次方程式ax(二乗)+bx+c=0を作るとき、異なる方程式は全部で何個できるか。また、そのうち異なる2つの実数解をもつのは何個できるか?という問題を解いてみたら、 3つの順列を場合わけして考えてみました …すべて異なる {2,3,4,5,7}の順列 5P3=60通り …2つ同じ {3,3,●}か{4,4,●}の順列 3*4*2=24通り …3つ同じ {4,4,4}のみ 1通り ……計 85通り (2)bの値の場合わけで考えてみました 異なる2つの実数解(b^2-4ac>0} で、b^2>4ac と ●4acの最小が、4*2*3=24であることから、b^2>24 で、b≧5 となります 【b^2>4ac → (1/4)b^2>ac】 …b=5、(1/4)b^2=25/4>6≧ac (a,c)=(2,3),(3,2) …b=7、(1/4)b^2=49/4>12≧ac (a,c)=(2,3),(2,4),(2,5),(3,2),(3,3),(4,2),(5,2) ……計 9通りになったんですけどあっていますか? もし間違っていたら途中式も含めて教えてくれませんか?
- みんなの回答 (2)
- 専門家の回答
みんなの回答
- ngtk
- ベストアンサー率44% (11/25)
考えかたはあっていると思います。 ただ >…b=7、(1/4)b^2=49/4>12≧ac (a,c)=(2,3),(2,4),(2,5),(3,2),(3,3),(4,2),(5,2) とありますが、(3,4)が抜けていませんか? 3*4=12で49/4より小さいですよ。
- postro
- ベストアンサー率43% (156/357)
…b=7、(1/4)b^2=49/4>12≧ac (a,c)=(2,3),(2,4),(2,5),(3,2),(3,3),(4,2),(5,2) ↑ここに単純な数え残しがあるだけで、それ以外はよいと思います。