- ベストアンサー
○回目にAの優勝がきまる確率をもとめよ。
悩んでも解けませんでした。申し訳なく思いますが宜しくお願い致します。 《問》 ある試合で、AがBに勝つ確率は一定で 2/3 である。この2人が試合をし、先に3試合勝った方を優勝とする。引き分けはないものとして次の各々の確率を求めよ。 Q: 4回目にAの優勝が決まる ・・・解答は 3C1 × (2/3)^3 × 1/3 = 8/27 とありますが、 私は 3C2 × (2/3)^3 × 1/3 ・・・・・・と考えます なぜ、3C1 なのでしょうか? 教えてください。 類似問題で、 問:ある試合でAがBに勝つ確率は一定で1/3である。2人が試合し先に4試合勝った方を優勝とする。引き分けはないものとして次の各々の確率を求めよ。 Q:5試合目に優勝が決まる。 解答は 「Aが最初の4回は3勝1敗で5回目に4勝する確率」として、 4C3×(1/3)^4 ×2/3= 8/243 ・・・となっています。 ・・・私もこのように考えたのですが、それだと上記の問題も、3C2 になると思うのです。どうしたら、3C1 となるのでしょうか。 読みづらくてすみません。
- みんなの回答 (2)
- 専門家の回答
お礼
質問してすぐに説明を頂き感謝しています。有難うございました。