- ベストアンサー
整数の基本問題
整数の基本問題です。 2つの整数ap,bpを考えます。(a,b,pは全て整数で、aとbは互いに素) ap,bpは両方とも整数dで割り切れます。 この時pはdで割り切れることを証明したいのですが、 どうすればよいでしょうか。 記号では以下のように表すとします。 d|ap・・・(1) d|bp・・・(2) (a,b)=1・・・(3)→ d|p それではよろしくお願いします。
- みんなの回答 (12)
- 専門家の回答
整数の基本問題です。 2つの整数ap,bpを考えます。(a,b,pは全て整数で、aとbは互いに素) ap,bpは両方とも整数dで割り切れます。 この時pはdで割り切れることを証明したいのですが、 どうすればよいでしょうか。 記号では以下のように表すとします。 d|ap・・・(1) d|bp・・・(2) (a,b)=1・・・(3)→ d|p それではよろしくお願いします。
お礼
なるほど、dを素数冪分解して その素数一つ一つに対してpの因数になるか確かめればできますね。 どうもありがとうございます。 また何か他に別解なども思い付きましたらよろしくお願いします。