- ベストアンサー
集合に関する問題。
三角形が全部で36個ある。 このうち、直角三角形であるものは21個、二等辺三角形であるものは17個である。 また、二等辺三角形のうち正三角形であるものは5個である。 さらに、直角三角形でも正三角形でもない二等辺三角形の個数と、 二等辺三角形でも正三角形でも直角三角形でもない三角形の個数は等しいという。 このとき、二等辺三角形でない直角三角形の個数はいくつか。 【解説】 直角三角形の集合をA 二等辺三角形の集合をB 正三角形の集合をC それぞれの集合に属する三角形の個数をn(A)、n(B)、n(C)とする。 題意より、n(A)=21、n(B)=17、n(C)=5である。 ここで、直角二等辺三角形の個数すなわりn(A∧B)=Xとする。 直角三角形でも正三角形でもない二等辺三角形の個数は、 17-(X+5)=12-X…(1) ★また、直角三角形であるかまたは二等辺三角形である三角形の個数は、 21+17-X=38-X…(2) したがって、(2)より、二等辺三角形でも正三角形でも直角三角形でもない三角形の個数は、 36-(38-X)=X-2…(3) ここで、題意より、(1)=(3)である。 すなわり、12-X=X-2 2X=14 ∴X=7 よって、二等辺三角形でない直角三角形の個数は、21-X=21-7=14 【答え】14個 について、「★以降」の考え方が分かりません。 1つ1つの数式が、次に何を求めるための下準備として計算しているのか、 その数式を解くことによって、次にどのように発展させて答えを求めることができるのかが分かりません。 よろしくお願いいたします。
- みんなの回答 (4)
- 専門家の回答
質問者が選んだベストアンサー
その他の回答 (3)
- hinebot
- ベストアンサー率37% (1123/2963)
回答No.4
- zabuzaburo
- ベストアンサー率52% (46/88)
回答No.3
- oshiete_goo
- ベストアンサー率50% (374/740)
回答No.2
お礼
すごく分かりやすかったです。 お蔭様で、解けましたー。 もう一度、解説を見ないで解いてみます。 本当にありがとうございました。