ベストアンサー 極限 2007/05/16 00:33 lim(x→1+0){(2x^3-3)/(1-x^2)}はどう求めればよいのでしょうか? 感覚的に+∞に発散するのかなぁ~と思うのですが、答案ではどう説明すればよいのか分かりません。 みんなの回答 (2) 専門家の回答 質問者が選んだベストアンサー ベストアンサー info22 ベストアンサー率55% (2225/4034) 2007/05/16 01:27 回答No.2 (2x^3-3)/(1-x^2) =3{(x^3)-1}/{1-(x^2)} - (x^3)/{1-(x^2)} =-3{(x^2)+x+1}/(x+1) + x +(1/2)/(x+1) +(1/2)/(x-1) ここで lim(x→1+0)をとれば -(9/2)+1+(1/4)+(1/2)lim(x→1+0){1/(x-1)} となり最後の項だけが+∞に発散しますね。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 その他の回答 (1) ringouri ベストアンサー率37% (76/201) 2007/05/16 01:06 回答No.1 xを1+ε (ε>0)とおいて、lim[ε→0]を考えれば、所望の結果が出るのでは? 分子→ -1、分母→ .... 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A この極限値 lim(x→∞)tanx/xの値をあるソフトで計算させたら 0と出ました。 lim(x→∞)sinx/x=0はわかり、 lim(x→∞)1/cosxが振動するのもわかるので、 感覚的には lim(x→∞)tanx/xは振動するような気がするのですが。 どなたかすっきり説明できる方はいらっしゃいませんか。 数学3 関数の極限 負の無限大の計算について lim (x → -∞) x^2+x = ∞ となるのは、 lim (x → -∞) x^2 = ∞ lim (x → -∞) x = -∞ とすると、∞-∞ の不定形になってしまうので、(x+1)x と変形し -∞(-∞) = ∞ ということでいいですか。 また、 「x^2が正の無限大に発散する速度の方が速いのだから、x^2+x は正の無限大に発散する」 といったような直感的な説明はおかしいですか。 よろしくお願いいたします。 極限の問題の解き方教えてください lim[x→-∞] {(√( x^2 + 4 )) / ( x - 1 )} の解き方を教えてください。 参考書の答えだと-1になるらしいんですが、計算すると発散してしまいます。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 高校数学の極限についてのまとめです。 「極限の等式について」 0以上の整数をnとおくと、n.999…=n+1、 n.000…=nとなる式や3/3=1、1^2=1、√1=1のような式や、lim(n→∞){n/(1+n)}=1の極限値に収束する極限の式の等号=の意味は右辺と左辺の値が全く等しいことを表す等号の意味。 一方、lim[n→∞]2n=∞(1)のように、極限が正の∞に発散するような、極限が発散するときの式の等号は、(1)の式なら「=∞」までセットという固定的な表現で、このような式の等号は右辺と左辺が全く等しいことを表わさない。 「∞の使い方について」 lim[n→∞]2n=2×∞=∞なら「2×∞」が誤った表現(受験時に答案用紙に「2×∞」を書き込むと間違いとなる)で、正しくはlim[n→∞]2n=∞ ∞は数値ではないので正式には「=∞」と書くのも適切とは言えないが慣習上、使われることがある。 だから、厳密に書くなら「=∞(発散)」などと書いた方が良い。 あるいは、単に「収束しない」、「∞に発散する」などと書いて、「=∞」とはあまり書かない方が良いが、受験時に答案用紙に「=∞」と書き込んでも間違いとはならない。 上記に間違いなどがあればご教示願います。 lim[x->∞]√x の極限値は存在する y=√xとおく。 微分してy’=1/(2√x) lim[x->∞]y’=0 yのグラフの傾きは、xが大きくなるに従って0に近づくから、 lim[x->∞]y=0。 と説明されて、反論できませんでした。 たたみかけるように、例として、lim[x->∞]1/x=0で1/xの極限値は存在する。 微分すると-1/x^2 で[x->∞]とすると、0となり傾きが0に近づくと。 しかし、√xは無限に発散する。説明のどこの部分で反論できたのか、教えてください。 極限について、おねがいします。 二つ聞きたいです。よろしくおねがいします。 (1)lim(x)^1/x=0であるのに、なんでlim(n)^1/n=1なんですか? ともにx→正の無限大に発散しnも同様とする。 (2)logx≦x-1はx>0のみでしか成立しない理由はなんでですか?確かにx≦0部分はlogが存在しないけど、不等式の評価はできないんですか? ついでに(3)もお願いします。できれば教えてもらいたいです。 (3)x^1/xの増減とlog1/xの増減が一致するのは微分すればわかりますが解ではlogが増加関数であることより一致するとなっていたのです。なぜ増加関数ならそうなるんですか? 数学(極限)について (問)lim x→2 x^2+k/x-2=5 を満たすkは存在するか。 解説に《分母が0に近づくためx^2+k→0のとき収束する。》とありますが、分子が0に近づいても、0ではないので結局発散してしまうと考えてしまいます。 なぜ、収束するのでしょうか? 極限値について fとgは連続関数で、 f(2)=1、lim x→2 [f(x)+4g(x)]=13 となるき、 g(2)とlim x→2 g(x)の値を求める問題で、答えは何れも3になってるのですが、よく掴めません。どなたか簡単に説明して頂けますか? 極限値問題 極限値問題 lim[x→∞](1+(1/x))^x=eを使って、lim[x→-∞](1+(1/x))^x=e を示せという問題なのですが、どのように解けば良いのでしょうか? 以前、lim[n→0](1+n)^(1/n)=eの証明について質問させて頂きました。 証明は理解できました。 その時、lim[n→-0](1+n)^(1/n)=eも成り立つと言うご回答を頂きました。 (1/x)=nとおけば、lim[n→-0](1+n)^(1/n)と出来きます。 lim[n→+0](1+n)^(1/n)=lim[n→-0](1+n)^(1/n)がなぜ成り立つか証明 できませんので、教えて下さい。 感覚的には分かるのですが、式変形などで成り立つことが証明できないものでしょうか? いろいろな極限値 次の極限値を求めよ。 (1)lim(X→+∞)(π/2 -tan^-1 X)^1/x (2)lim(X→+0) Xlog(sinX) (3)lim(X→+2) {log(h+1)-log3}/(h-2) (4)lim(X→+0) (Xtan^-1・1/X) (5)lim(X→+0) (X-1)/(cos^-1・X)^2 (6)lim x→0 (1-cosX)/X (7)lim X→+0 (1+X)^1/X (8)lim X→0 (tan^-1)・1/X^2 (9)lim X→0 (Xtan^-1)・1/X^2 (10)lim h→0 (e^5h - e^2h)/h (11)lim n→∞ 1/n(1/√(n+1)+ 1/√n+2 )+1/√2n) (12)lim x→+0 √{(x+3)(5x-1)}/(x+3) (13) lim x→-0 √{(x+3)(5x-1)}/(x+3) よろしくお願いします。 2変数関数の極限 (1) lim((x,y)→0) tan(x^5 + y^6) / (x^4 + y^4) 変形して行くと 1/(cos(x^5+y^6)) * (sin(x^5+y^6))/(x^5+y^6) * (x^5+y^6)/(x^4 + y^4) と3つの部分に分ける事が出来て、1つ目と2つ目は1に収束する事は分かるのですが、 3つ目の部分は分子の方が高次だから早く0になりそうだと予想はつくのですが 数学的な説明方が分かりません。 (2) lim((x,y)→0) (1 + x^2 y^2)^(1/(x^2+y^2)) べき乗の数(右肩の数)が0に向かうので、べき乗される数が発散しなければ1になりそうで、 しかもべき乗される数も1に向かってるので答えは1かなと言う予想はしているのですが、 それをどう数学的に説明すればいいのか分かりません。 以上2問、よろしくお願いします。 極限 lim x→1 [-(x^2)+2x+2] 〔〕はガウス記号です 答えは2にですが自分の解き方と答えが合いません。 lim[x→2][-x^2+2x+2] =lim[x→2][-(x-1)^2+3] =lim[t→1][-t^2+3] (t-1=xと置いた) ここで lim[t→1+0][-t^2+3]=lim[t→1+0]1=1 lim[t→1-0][-t^2+3]=lim[t→1-0]2=2 よってlim[x→2][-x^2+2x+2]は存在しません ではないのですか? 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 極限値 1.lim(x→0)tanx/x 2.lim(x→0)(1-cosx)/x^2 3.lim(x→0){1-cos(1-cosx)}/x^4 1.lim(x→0)cosx*sinx/x=1 2.lim(x→0)(sinx/x)^2*1/(1+cosx)=1/2 で合っているでしょうか? あと3がわかりません。どなたかアドバイスをお願いします。 極限値を求め方 極限値の求め方をだれかが説明してお願いします。 問題は次です。 lim(x→0) (x sin2x / e^3x - e^-2x - 5x ) 極限値が存在する場合 以下の問いの解答がなく、自分の解き方が正しいのか不安ですので、確認していただきたく思います。 [問い] 極限値lim(X→0) (expX-aX-b)/X**2が存在するような定数a, bを求めよ。 [my答案] 分母のX2乗はゼロになるので、分子もゼロとなり、不定形になると思いました。そしてロピタルの定理を適用しました。 ・分子もゼロになるので、Xにゼロを代入するとb=1 ・次にロピタルの定理をてきようするため、分母と分子をそれぞれxで微分する。lim(X→0) (expX-a)/2X =1/2 lim(X→0) (expX-a)/X ここで公式lim(X→0) (expX-1)/X =1を適用する。 するとa=1となる。 以上より、答えはa=1, b=1になると思います。 これで大丈夫でしょうか。 よろしくお願いいたします。 極限値 lim[x→0] x tan^-1(1/x) どのようにすればよいのでしょうか? ロピタルの定理で lim[x→0] {tan^-1(1/x)}/(1/x) =lim[x→0]{tan^-1(1/x)}'/(1/x)' =lim[x→0]{-1/(1+x^2)}/(1/x)^2 =lim[x→0](x^2)/(1+x^2)=0 なのでしょうか? 教えて頂けないでしょうか? ちなみに tan^-1(1/x) のグラフはどのようになるのでしょうか? よろしくお願い致します。 極限です。 (1)lim(n→∞)3^(n-1)-4^(n+1)/2^(2n+3)+3^(n+2) (2)lim(n→∞)(√(x^2+3x)+x) (3)lim(x→1)(1/(x^2+x-2)-1/2x^2-x-1) (4)lim(x→3+0)9-x^2/√(3-x)^2 (5)lim(x→0)(1-cosx)sinx/x^3 この極限の問題が分かりません。 どなたか解説よろしくお願いいたします。 極限の解き方 lim(x→∞)x・tan(4/x) =lim(x→∞)x・{sin(4/x)/cos(4/x)} =lim(x→∞)x・sin(4/x)・1/{cos(4/x)} =lim(x→∞)x・4/x・{sin(4/x)/4/x}・{1/cos(4/x} =4 なりましたが 参考書と自分の解き方が違うので参考書のとき方も知りたいのでおしえてください 参考書は lim(x→∞)x・tan(4/x) =lim(x→∞)x・{sin(4/x)/cos(4/x)} =lim(x→∞)x・sin(4/x)・1/{cos(4/x)} =lim(x→∞)4・(x/4)・sin(4/x)・{1/cos(4/x} =4 です。 4行目が自分の解き方と違うのでおしえてください 極限値 次の問題の解き方を教えてください。 lim(x→0) Xsin(1/X) lim(x→0)1/Xsin(X) lim(x→0)X^2/3 宜しくお願いします。 極限についてです。 【問題】 lim(x→∞)((3x+2)/(3x))^(4x)を求めよ. 【自分なりの回答】 lim(x→∞)((3x+2)/(3x))^(4x) =lim(x→∞)(1+2/(3x))^(4x) =lim(x→∞)(1+1/(3x/2))^((3x/2)×(8/3))・・・・・・・・・・・・・・・・・★ =lim(x→∞)(1+1/(3x/2))^(3x/2)×(1+1/(3x/2))^(8/3) =e×1 =e 【質問】 どうやら★印の行までは間違っていないようなのですが,それ以降が間違っているようなんです.きっと間抜けな質問だと思うんですが,アドバイスをいただけたらと思います.お願いします. 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など