ベストアンサー 極限の性質1 2002/05/10 13:01 ある関数 f(x)があって, lim f(x) = e x → ∞ の時, lim f(x) = e x → -∞ とは限らないと思うんですが,間違ってますか? みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー vortexcore ベストアンサー率63% (46/73) 2002/05/10 13:06 回答No.1 もちろん限らないです。例えばf(x)=exp(-x)+e 質問者 お礼 2002/05/10 13:18 そうですよね.ありがとうございました. 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 極限値の性質 極限値の性質で lim[x→a]f(x) = A, lim[x→a]g(x) = Bのとき、 lim[x→a]{f(x) + g(x)} = A + B という公式がありますが、 この式は lim[x→a]{f(x) + g(x)} = lim[x→a]f(x) + lim[x→a]g(x) であるから、 lim[x→a]{f(x) + g(x)} = A + B であるということであっていますでしょうか? 極限値 Lim n→∞ e^π/nーe^0 /π/nー0 を問題集の答えで、 Lim X→0 e^Xーe^0/xー0 =f`(0)=1 となっているのですが、 Lim n→∞ e^π/nーe^0 /π/nー0 が、 Lim X→0 e^Xーe^0/xー0 =f`(0)=1 こう表されているのが、理解できません 極限値 f(x)=e^(-1/2)/x^2 について、 lim[x→+0] f(x) が求まりません。 私はまず対数を取って、 logf(x)=-(2xlogx+1)/x ・・・ (1) 次にロピタルの定理より、 lim[x→+0] logf(x)=lim[x→+0] -2(logx+1)=+∞ ・・・ (2) ∴lim[x→+0] f(x)=e^(+∞)=+∞ このように解きました。 しかし、(1)式によれば、lim[x→+0] xlogx=0 より、lim[x→+0] logf(x)=-∞ 、 lim[x→+0] f(x) = e^(-∞) = 0 となってもよさそうなものです。(但しこの場合は(1)式右辺の分母について、lim[x→+0] x=0 より、数学的に正しくないと思われる) 実際にy=f(x)をコンピュータでプロットした結果は、lim[x→+0] f(x) = e^(-∞) = 0 となりましたが、(1)式からロピタルの定理によって(2)式を導出することになんらかの問題があったのでしょうか? 繰り返しますが、(1)式からロピタルの定理を用いて lim[x→+0] f(x) を求められない問題について、質問致します。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 極限 極限f(x)はxの関数としてください。 |f(x)|<1/(2x+3)のとき、lim(x→∞)1/(2x+3)=0だから、lim(x→∞)f(x)=0とあるのですが、ー1/(2x+3)<f(x)<1/(2x+3)と考えているのでしょうか? それとも、なにか他の考え方があれば、教えてください。 極限値について fとgは連続関数で、 f(2)=1、lim x→2 [f(x)+4g(x)]=13 となるき、 g(2)とlim x→2 g(x)の値を求める問題で、答えは何れも3になってるのですが、よく掴めません。どなたか簡単に説明して頂けますか? 関数の極限 「3次関数f(x)が次の2つの条件を満たすとき、f(x)を求めよ。」 [1]lim(x→0){f(x)/x}=1 [2]lim(x→1){f(x)/x-1}=1 ☆数(2)の微分のところなんですが、解き方が全然分からないので、なるべく詳しく教えてください。よろしくお願いします。 極限値とグラフの概形 f(x)=(e^x)/x f'(x)={(e^x)(x-1)}/x^2 のグラフを書くとき、以下のような計算が出てきました。 lim₍x→+∞₎(e^x)/x=+∞, lim₍x→-∞₎(e^x)/x=0, lim₍x→+0₎(e^x)/x=+∞, lim₍x→-0₎(e^x)/x=-∞ 四つのlimから、グラフのどのような形が導けるか教えてください。 不定形の極限値 不定形の極限値の範囲で下の2つの定理の証明がわからなくて困っています。 どなたか解説をお願いします。 定理1 f(x),g(x)はある開区間(a,∞)で微分可能な関数とする。 もし、lim(x→∞)f(x)=lim(x→∞)g(x)=0が成立し、 極限 lim(x→∞) f'(x)/g'(x) = L が存在すれば lim(x→∞) f(x)/g(x) = L が成り立つ。 定理2 f(x),g(x)はaを含むある開区間で微分可能な関数とする。 もし、lim(x→a)f(x)=lim(x→a)g(x)=∞が成立し、 極限 lim(x→a) f'(x)/g'(x) = L が存在すれば lim(x→a) f(x)/g(x) = L が成り立つ。 極限の問題です f(x)=(e/x)^logx (x>0)のグラフを求めるために x→+0とx→+∞の極限を調べたいのですが lim[x→+0]f(x)では調べられないので lim[x→+0]logf(x)=lim{logx(1-logx)}=-∞ lim[x→+0]f(x)=0 としたのですが、あってますか? あってるとするとグラフは原点からy軸漸近線で始まることになるのですか? lim[x→+∞]logf(x)=lim{logx(1-logx)}=-∞ lim[x→+∞]f(x)=0 x軸が漸近線? よろしくお願いします 極限値 f(x)=(4x^3-5x)・e^(-(x^2)) とします。数値計算ではxを大きくするとf(x)は限りなく0に近づいていきますが、 lim(x→∞) f(x)=0 となるのでしょうか。また、0になるならばその解法を教えてください。 関数の極限の問題です。 極限の問題を考えています。 fを実数値連続関数とする。 lim[x→∞](f(x+2)-f(x))=3ならば、lim[x→∞]f(x)/xが収束することを示して、 さらに値をもとめよ。 よろしくお願いします。 極限 lim e^x - e^-x / e^x + e^-x x→∞ という問題がわかりません。 ロピタルの定理を使って f´(x)/g´(x) にして考えようと思ったのですが、e^xを微分してもうまく消えないので解けません。 何かいい方法を教えてください。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 不定形の極限について お世話になっております。 分数関数の極限についての質問です。 具体的には f(x)=x^2/(x-1) のグラフを描く教科書の例題にあるような基本的なものです。 グラフを描くために、漸近線の方程式を求めるのは必要な過程と思います。 上の例題の場合、 関数f(x)の定義域x≠1に対して、x→1 の時のf(x)の極限値を求めるのに、教科書でははしょって即座に lim[x→1+0]f(x)=∞ としてますが、実際計算で有理化とかしても、「定数/0」の形になってしまうので、極限値の性質 lim[x→a]{f(x)・g(x)}=αβ (但し、lim[x→a]f(x)=α、lim[x→a]g(x)=βが前提) を利用して、g(x)=x^2、 h(x)=1/(x-1) みたいに考えたら、前者のx→1の両側極限は容易に求められますし、後者はグラフから求められます。 結果、 lim[x→1+0]f(x)=1・∞=∞ lim[x→1-0]f(x)=1・(-∞)=-∞ とようやく教科書の記述に至ったのですが、実際こんな面倒な手順でないと導けないものでしょうか? ロピタルの定理は、一応概要には触れましたが、不完全なのでご回答にはお使い下さらないでいただきたいです。 ご助言いただけると有り難いです。宜しくお願い致します。 連続関数は関数記号と極限記号を入れ替えられる 連続関数であれば関数記号(fのこと)と極限記号(limのこと)を入れ替えることができる事を 以下のように示したのですがあっていますか。 (証明) 関数f(x)がx=aで連続 ⇔lim[x→a]f(x)=f(a) このときlim[x→a]x=aであるので lim[x→a]f(x)=f(a) ⇔lim[x→a]f(x)=f(lim[x→a]x) よって連続関数であれば関数記号と極限記号を入れ替えること ができる (証了) 極限の問題の解き方が分かりません 関数 f (x) = sin (1/x)に対して,極限 lim f (x) (x→0) は存在するか.という問題の解き方が分かりません。どなたか分かる方がいらっしゃいましたら教えてください。 極限の問題の解き方が分かりません 関数 f (x) = sin (1/x)に対して,極限 lim f (x) (x→0) は存在するか.という問題の解き方が分かりません。どなたか分かる方がいらっしゃいましたら教えてください。 微分・極限値 計算について質問です よろしくお願いします /は普通の分数 /は普通の分数の下にまた分子がくるという意味です 1. 次の関数f(x)を定義によって微分しなさい。 f(x)=1/x f´(x)=lim h →0 f(x+h)-f(x) =lim h →0 1/x+h-1/x /h =lim h →0 1/h{x-(x+h)/x(x+h)} =lim h →0 -1/x(x+h) =-1/xの二乗 このlim h →0 1/x+h-1/x /hのとき なぜlim h →0 1/x+hではなく、hもxと一緒になって分子に移動しているのかがわかりません。 その計算方法を教えてください よろしくおねがいします。 微分法 極限値の求め方が分からない・・・ 導関数を先にやっていたのでどうにも極限値の求め方が分かりません。 f(x)=2x^2-4x なら f'(x)=4x-4 と言った感じで導関数の公式を用いてできるのですが、limの問題がさっぱりです。 例えば lim x^2(x+4) 【x→-2】 これだと全てのxに-2を代入して=8となるのに lim x^2+4x-5 / x^2+x-2 【x→1】 は一度分解して lim (x+5)(x-1) / (x+2)(x-1) としてから (x+5) / (x+2) として、ここに代入して答えが=2となるんでしょうか? 私は最初の段階で代入してしまい失敗します(分母0なんて存在しないですから違うのは分かるんですが) 数値を入れて良いのはどの段階からでしょうか? また、導関数の問題なんですが f(x)=x-3 / 2x+1 と言った感じで分数の形になっている問題は専用の公式みたいな物があるんですか?それとも普通に f'(x)=1 / 2 になるんでしょうか? 極限の“=”の順番について 関数 f(x) について、x→∞ のとき、lim f(x)=α となったとします。 計算の過程を書くと、下のようになりますよね。 lim f(x)=式変形=式変形=・・・=α (x→∞) 『このとき等号は、右から左へ順に成立する』 と参考書に書いてあったのですが、理由がわからないんです。 どうしてなのでしょうか。 ご存知の方、教えてください。 極限値について lim(x→0)f(x)^2=0 ならば lim(x→0)f(x)=0 これって成り立ちますか?? 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など
お礼
そうですよね.ありがとうございました.