- ベストアンサー
三角形ABCにおいて、点HがHB→・HC→=HC→・HA→=HA→・HB→
三角形ABCにおいて、点HがHB→・HC→=HC→・HA→=HA→・HB→をみたすとき、Hは三角形ABCのどんな点か。 この問題教えてください。 HB・HC=HC・HAより、HCでわけてみました。 HC(HBーHA)=0 このあとがわかりません>_< 教科書の回答をみると <回答> HC→・AB→=0 同様に、HA→・BC→=0、HB→・AC→=0 よって、Hは三角形ABCの垂心である。(答) とかいてありました。 わからないのは、上の、HC・AB=0の部分です。 どうしてHC・AB=0とわかるのですか?? ABはどこからでてきたのですか? 題意を読んでると垂心っぽいというのは想像つくのですけど、Hの位置が題意の何処をよんだら、はっきりするのですか? 仮にHが三つの頂点から対辺に線が伸びた場所、つまり垂心の位置がHとしたら、HC・AB=0というのは ベクトルの垂直の公式とみれるので=0としきがなります。 同様に~と書かれてる部分も同じですけど、 どのへんで、垂心の位置にあると、判断できたのですか?? HC(HB-HA)=0とHCで分けてみましたけど、 ここがポイントですか? 誰かおしえてください。よろしくおねがいします>_<
- みんなの回答 (2)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
noname#20377
回答No.2
その他の回答 (1)
- debut
- ベストアンサー率56% (913/1604)
回答No.1
お礼
返事書いていただいてありがとうございました!! 数学の世界は面白いです!!ありがとうございました♪