• ベストアンサー

収束円について (複素関数)

「収束円」というものが何なのか分かりません。どのように求めるのかも分かりません。 例えば、i=(-1)^(1/2)で、Σ[i=1,∞]((z-i)^n)/((3^n)*(n^2))の整級数の収束円はどのように求めればよいのでしょうか? どなたかお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • ojisan7
  • ベストアンサー率47% (489/1029)
回答No.1

収束半径を求めるには、いくつか、方法があります。その問題に適した方法を使えばよいわけです。有名なのは、Cauchy-Hadamardの公式です。 Σ[n=1,∞]((z-i)^n)/((3^n)*(n^2)) にこれを、適用すると、収束半径をρとしたとき、 1/ρ=lim sup[n→∞]{1/((3^n)*(n^2))}^{1/n}=1/3 となりますから、収束円は、 |z-i|<3 となります。詳しい計算は、ご自分でやって、確かめてください。

hikaru_009
質問者

お礼

どうもありがとうございました。 自分でやってみます。 ありがとうございます。

関連するQ&A