- ベストアンサー
電流は電子の数によるのか、速度によるのか、
単位時間当たり、単位面積を通過する電子の数で、 電流が決まりますが、 電流値が2倍になるということは、 流れる電子の数が2倍になるということでしょうか? それとも、電子の数は変わらず、流れる速度が2倍になるということでしょうか? それとも、数、速度両者が相成って2倍になるのでしょうか?
- みんなの回答 (13)
- 専門家の回答
質問者が選んだベストアンサー
下記URLをご参考下さい。 http://www.ne.jp/asahi/shiga/home/MyRoom/velocity.htm http://www.geocities.co.jp/Technopolis-Mars/3422/mat34.htm 電流=電子の見かけの速度X電子の電荷X電子数密度X導線の断面積 なので、電子数密度が大幅に変化しない事を考えると、電子の見かけの速度がほぼ比例していると判断しても良いかと思われます。
その他の回答 (12)
- moby_dick
- ベストアンサー率33% (77/228)
「単位時間当たり、単位面積を通過する電子の数」は、電流密度です。 「単位時間当たり、通過する電子の数」が、電流(の強さ)です。 電流値が2倍になるということは、 流れる電子の数が2倍になっても、電子の数は変わらず、流れる速度が2倍になっても、数、速度両者が相成って2倍になってもなります。
- ency
- ベストアンサー率39% (93/238)
No9 ency です。 No11 foobar さんへ: 確かにそのとおりですね。 # 私も、まだまだですなぁ。。。 フォローありがとうございました。
- foobar
- ベストアンサー率44% (1423/3185)
#9さんの 「原子とか他の電子とかがあるから、あちこちぶつかって結局ある一定速度に収束しそうな気がします。」 に関して、、。 電子が一度ぶつかって、次にぶつかるまでには、平均するとある一定の距離を移動します。 このとき、外からかかっている電界(電圧/導体の長さ)が大きいと、この距離を移動する間の加速が強くなり、電子の電界方向の速度が増えます。(平均的には獲得するエネルギーは平均移動距離*電界の強さ になります) 結果、電界が強いと、「ある一定速度に収束」の一定速度((電界方向にドリフトする)平均速度)が大きくなります。 (上記様相は、抵抗のある導体に電圧を印加したとき、印加電圧に比例して電流が増えることに対応しています)
数、速さ、どちらかが2倍になれば電流値は2倍です。 仮に両方共2倍になれば電流は4倍になります。 数というのは正確には密度でしょうね。感覚的に言いたいことは分かります。
- ency
- ベストアンサー率39% (93/238)
電流は、単位時間当たりに流れる電荷量。。。 う~ん、そうすると単位時間当たりに流れる電荷が増えた=電子の数が増えたというふうに思うんですが。。。 そもそも、導線の中を流れる電子の速度って、簡単に2倍3倍にならないように思うんですが、どうなんでしょうか?>詳しい人フォローお願いします! というのも、原子とか他の電子とかがあるから、あちこちぶつかって結局ある一定速度に収束しそうな気がします。 ま、抵抗の大小でいうところの、電流の流れやすさは、電子の速度が関係しているんでしょうけど、同じ導線で考えるんであれば、電子の量が増えたと考えるべきではないかと。。。 あ、ひょっとしてこれが、peace_noa さんの > それとも、数、速度両者が相成って2倍になるのでしょうか? の言わんとするところでした?
- fjnobu
- ベストアンサー率21% (491/2332)
真空管の中の話では、電流が2倍になるのは電子の数が2倍になるわけですが、導線の中では少し様子が違います。 導線の中では電流は、磁界で移動し電流が2倍になるのは磁力が2倍になるのです。 電子そのものが移動すると考えると間違いになります。 1個の電子は、およそ1Aでは10cm/s程度のノンビリした速度で動いていてその速度は電流が2倍になると倍になるので、電子の移動速度が2倍になると言ってもうそでは無いのですが、電流は30万Km/sで移動するのです。 だから、電圧なり電流を考えるとき電子の動きと理解するとこんがらがって来ます。
- foobar
- ベストアンサー率44% (1423/3185)
#4さんが書かれているように 「数、速度両者が相成って2倍。どちらが支配的かは状況次第」 で良いかと思います。 通常の導体なら、電子(キャリア)の密度はほとんど変わらないので、 「電流の増加は電子の速度の増加による」でしょうし、 半導体温度センサで温度を変えたときみたいに,キャリアの密度が変わって(同じ印加電圧で)電流値が変わる場合には、 「(電子などの)キャリアの数が増えて、電流が増加する」 ということになるかと。
- chainarrow
- ベストアンサー率30% (10/33)
>単位時間当たり、単位面積を通過する電子の数で、 電流が決まりますが というのは間違いです。 単位時間当たり、導線の断面を通過する電子の数で、 電流が決まります(I=envS)。 ですからこの質問の答えはNo.2さんの通り「電子の流れる速度が2倍」でいいです。 しかしこれとは別に「流れる電子の数が2倍」というときも電流は2倍になります。これは「導線の断面積が2倍」ということを意味します。 車に例えると、「軽く混んでいて時速20キロで流れている一車線の道路」と「軽い渋滞で時速10キロで流れている二車線の道路」では車の流れる速さ(台数/時間)は同じだということです。 …わかりづらくなったかもしれません…すみません。
- Sbacteria
- ベストアンサー率42% (55/129)
#3追記です。 当然ですが、 電子の電荷も導線の断面積もそれほど大きな変化は受けません。
- imoriimori
- ベストアンサー率54% (309/570)
「数、速度両者が相成って2倍になるのでしょうか?」→そうです。数と速度とどっちが支配するかは状況次第。 電流(アンペア)の定義は、ある断面を単位時間あたりに通過する電荷量、単位[C/s] 立方メートルあたりn個の電子がある。n[ケ/m^3] ある断面、面積Sがある。S[m^2] 電子は平均的に速度vで移動している。v[m/s] 電子一個の電荷はqである。q[C/ケ] 単位時間に断面を通過する電荷の量は(つまりアンペア)は vnqS 単位は[m/s ・ ケ/m^3 ・ C/ケ ・ m^2 ]=[C/s] nが小でもvが猛速なら電流大。 vが低速でもnが巨大密度なら電流大。
- 1
- 2
お礼
皆さん、たくさんの回答ありがとうございました。 流れる電子の密度と速度、両方の要素で決まるのですね。 後の詳しいところは自分でしらべて見ます。 ありがとうございました。