締切済み 扇形の面積,体積,こうの長さの公式教えて下さぃ(>_<) 2005/08/26 10:38 数学ゎ結構好きなんですけど,図形の問題が特に嫌ぃで,全然公式もゎかりませんoo(・・;) 半径ゎr,3.14ゎπの符号に置き換ぇて教ぇて下さぃ!!m(__)m ょろしくぉ願ぃします☆彡 みんなの回答 (3) 専門家の回答 みんなの回答 tatsumi01 ベストアンサー率30% (976/3185) 2005/08/26 11:23 回答No.3 助詞の「わ」を「は」と書くと教育がないと思われます。「こう」の長さは「弧」の長さでしょうか。 レポート課題ではなさそうなので、考え方だけ書きます。 扇形は中心角θで決ります。円について2πで決る量は比例計算で出ます。θ/(2π)で考えれば全部決ります。ここで角度はラジアンで測ります。 体積って何ですか。扇形を丸めて立てたときの体積でしょうか。底面の円の周囲が弧の長さ(θr)ですから、その半径が出て、底面の円の面積はすぐ出ますね。稜の長さがrですから、ピタゴラスの定理で高さが出ます。底面の面積と高さを掛けて、1/3を掛ければ出ます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 postro ベストアンサー率43% (156/357) 2005/08/26 11:18 回答No.2 あなたゎなかなかぉもしろぃ人だとぉみぅけしました。 半径:r 円周率:π とします。 扇形の、扇の開ぃた角度をθ度とすると、その面積Sゎ S=(θ/360)πr^2 です。 それから扇形にゎ厚みがなぃので、体積ゎありません。 あと、「こうの長さ」ってのが、私にゎゎかりませんでした。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 SolarRay ベストアンサー率14% (22/150) 2005/08/26 11:00 回答No.1 基本的な公式くらいは教科書に載っているはずなので読むと良いでしょう。 ここで聞くほどのことではありません。 しかし、「扇形の体積、こうの長さ」なんて 存在しないものを求める公式は載っていないでしょうから、諦めてください。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 扇形の面積の求め方を教えてください 扇形の面積の求め方を教えてください 問題は、 弧の長さ:πcm 中心角:60° 半径:3cm です あと、公式も教えてください。 お願いします 球の表面積・体積 高校生のものです。 球の問題を解いているときに、球の表面積の公式を忘れてしまったので自力で出そうとしました。 球の半径をrとすると、球の表面積は4πr^2です。 僕は積分して解こうと考えました。 まず球をまっすぐスライスして(たまねぎみたいに)そのときの円の半径をaとでもしてその円周を積分区間rから0までして2倍にしました。 すると2∫(2πa)da=2πr^2となって本来のものの半分になります。 同様に体積も円の面積をだして積分すると半分の値になってしまいます。 どこにまずいところがあるのでしょうか? 球の表面積から体積を求める 表面積が20.0cm^2の球の体積を求めたいんです。 S=4πr^2とV=4/3πr^3 の公式は知ってるのですが、最初のr^2のせいで半径をどう出したらいいかわかりません。 答えはr=1.26cmとなっています。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 図形の面積を求める公式の証明 図形の面積を求める公式の証明 三角形や四角形、台形、菱形など様々な図形がありますが、義務教育で習う図形の公式の証明は可能でしょうか。 今までは暗記していましたが、証明できれば楽しいだろうと思い、質問させていただきました。 数学が苦手な人や小学生に説明する証明と理系の大学生に説明する場合の2通りを教えていただけないでしょうか。 Re:扇形の面積 先にありました質問No.823023で、 >扇形の弧の長さと弦の長さだけが解かっています。 >この時、扇形の面積は出すことができるでしょうか? に対して、何とか回答しようとして、ちょうど回答No.3と同じように、 弧の長さL、弦の長さをD、扇型の半径Rとすると R=L/arcos{1-D^2/(2R^2)) となることはわかりました。ところが、これが解けないのです。一応、高校での数学は結構トップレベルをいっているつもりなのですが解けません。これを解くと・・・として回答されていますが、解法を教えていただけないでしょうか(できれば、高校レベルでわかるようにお願いします)。 面積求積 正方形(一辺R)の中に四分円を各頂点から結んだとき真ん中にできる図形 (ひし形に似た図形)の面積が求められますか。教えてください つまり半径Rの4つの円弧で囲まれた図形です。 サイトをみてもそういう問題が検索できなかったのでよろしく。 球の体積と表面積を表示するプログラム 高校生です。 学校であった問題なのですがいまいち理解できません。 いまのところ習ったものはprintf関数とscanf関数のみです。 問題を書くので誰かご教授ねがえませんでしょうか? Q.半径をキーボードから入力し球の体積と表面積を表示するプログラムを作成しなさい。なお、入力は整数値で行い、面積は実数値で表示するものとする。 公式 球の体積=4/3πr3(三乗です。) 球の表面積=4πr2(二乗です。) r:球の半径 π:円周率(プログラム上では3.14を用いる) お願いします。 頭を切った円すいの体積と面積 R。r=両底面の半径、h=高さ σ=R-r、σ=R+r V=三分の一パイh(R二乗+Rr+r二乗) =四分の一パイh(σ二乗+三分の一σ二乗) M=パイl(R+r) l=母線の長さ という公式がありますが、これがなぜそうなるか わかるかたどうか教えて頂けないでしょうか?お願い致します。 極座標の面積 積分の応用の問題で、ある曲線と二つの半直線で囲まれた図形の面積を求める問題なのですが (1)r=2a sinθ :θ=π/2 θ=π (2)r=e^θ :θ=0 θ=π の二つの問題なのですがよくわかりません。 ”極座標による図形の面積”の公式に入れるわけなのですがrの二乗をするところが(2)はよくわからないです。θの二乗ってどうやるんですか??(1)はどう二乗すればいいのでしょう? あと、図形の形が場合によっては二つになって2をかけるときがあるのですが、この場合2をかけるのは(2)だけでいいのですよね?? 長くなりましたが教えてください。 数学の公式について知りたいんですが よければ教えてください 数学の公式について 中学校三年間で習う図形の公式をしりたいんですか、よければ教えていただけないでしょうか よろしくおねがいします 三角形の面積の公式の順序について 小学5年生の図形の面積を求める問題です。 大きい三角形から小さい三角形を引いたくさび形の面積を求めるとき、 「大きい三角形の面積-小さい三角形の面積」のやり方にしましたが、数字を書くときに「底辺×高さ÷2-高さ×底辺÷2」としてしまいました。 答えは正解でしたが、式で減点されてしまいました。(テスト) 確かに公式は底辺×高さ÷2ですが、底辺×高さ=高さ×底辺なので釈然としません。 やはり公式どおりに書かないとダメなのでしょうか。 扇形の内接円について ご指導をお願いします。 中学3年生ですが、数学の図形分野が苦手です。学校では現在、 相似分野の途中です。まだ、三平方の定理は習っていません。 解らない問題ですが、 半径15cm、中心角60°の扇形に内接する円の面積の求め方が 解りません。 よろしくお願いします。 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 回転体の体積 1993年度の一橋大の数学で、回転体の体積の公式 V=π∫[a,b]x^2dy という公式が出てきたんですが、これは数Ⅲの範囲ですか? なぜ文系一橋でこのような公式が.... 一応参考までに問題を載せておきます。 xy平面上の原点と点(1/√3,1)を結ぶ線分をY軸のまわりに回転してしてできる形の容器がある。この容器に水をいっぱいに満たしたのち、半径rの鉄の球を沈める。ただし1/3≦r≦2/3である。 (1)あふれる水の体積Vをrで表せ。 (2)Vの最大値を求めよ。 三角形の面積の公式について 中学数学を教えていらっしゃる方、もしくは詳しい方、教えてください。マニアックな質問です。 小学校で習う、三角形の面積の求め方、 底辺×高さ÷2 は、中1のどのタイミングで 1/2×底辺×高さ に変わるのでしょうか。 教科書では、空間図形で角錐、円錐の体積をやる際に 1/3×底面積×高さ と、分数を前に持ってくるやりかたが出てきて、同じ章に、三角形も 1/2×底辺×高さ が確認できます。 しかし、文字式や方程式、比例などですでに三角形の面積に関わる問題が出た場合、教えるときはまだ小学校の 底辺×高さ÷2 なのでしょうか。 よろしくお願い致します。 円錐の側面積の公式 の 説明(証明) 次の 問題を 解いて下さい。 「円錐の側面積の公式」の説明(証明) 底面の半径をr、円錐の母線の長さをRとする。 側面積Sは S=πrR で 求められることを 説明(証明)しなさい。 1 ただし、説明の中で、 - LR 、L=2πr を 用いること。 2 です。 急いで答えを 知りたいので よろしくお願いします。 扇形の面積を最大とする半径rを求める。 周が一定mで、半径r、中心角がaである扇形の面積を最大にする半径と中心角aを求めよ。という問題で、弧の長さをbとするとb=m-2r 面積をsとするとs=br/2=(m-2r)r/2=-r^2+mr/2=-(r-m/4)^2+m^2/16となってr=m/4のとき最大となることは分かったのですが、a=2という回答が分かりません。s=πr^2a/360=m^2/16 これを解くとa=360/πとなって2となりません。わかる方どうぞ教えてください。 中学数学の公式で、円の面積はS=πr2(2乗)、円周はl=2πrと息子 中学数学の公式で、円の面積はS=πr2(2乗)、円周はl=2πrと息子が習ってきたのですが、この公式に使われている文字の中で面積を表すSと円周を表すlには何か意味と聞かれました。円の半径を表すrはradiusの頭文字のrだろうと教えたのですが、Sとlについては辞書を引いてもわかりませんでした。どなたかご存じの方がいれば、教えていただけますか。 扇型の半径の求め方 扇形の半径が8cm,中心角が150°、円錐の底面の半径がrの円錐がある。 このとき円錐の底面rの長さを求めよ。 この問題求め方の式も一緒に教えてください。 公式について こんばんは。 数学の図形の計量の単元での公式について質問があります。 今、宿題をやっていて間違ったところなのですが tanθ=√2 cosθ=1/√3のときsinθを求めよ。 という問題で a, sinθ2乗+cosθ2乗=1 b, tanθ=sinθ/cosθ この2つの公式が使えると思ったのでaの方の公式を使ったら sinθ=√2/3 となりました。でも解答をみたらbの方の公式を使っていて sinθ=√6/3 となっていました。 自分でbの方の公式を使うとちゃんと解答どおりになるんですが なぜaの公式では間違った答えになるのでしょうか? また、どのような場合にa,bどっちの公式を使うなどの決まりはあるのでしょうか? すごく見辛くなってしまい申し訳ないのですが、どうか回答をお願いします。 球の体積と表面積。答えが間違ってると思うのです・・ 問。 立方体Aに内接する球Kと外接する球Lがある。 (3)KとLの体積の比を求めよ。 答え。 1:3√3 (1)がAとKの表面積の比、(2)はAとKの体積の比です。 この(3)だけ答えを間違えました。 私の回答は、1:2√2です。 解き方としては、Kの半径をx、球K、Lの中心をOとします。 Oから立方体Aの頂点に引いた直線は球Lの半径になり、 またその直線は、立方体Aに内接する球Kの半径から√2xと分かります。 (直線と内接円の半径から、45°、45°、90°の二等辺三角形が出来るため。) 従って球Lの半径は√2xです。 球の体積の公式から、V=(4/3)πr^3なので、 それぞれ、(4/3π)x^3、(8√2/3)πx^3となりました。 なので体積比は、1:2√2となったのです。 この問題集には詳しい解説が載っておらず、回答と解法の一部が載ってるだけです。 その解法の一部ですが、 「立方体Aの1辺の長さをaとすると、球K、球Lの半径はそれぞれ、a/2、√3a/2」 とありました。 どうして回答を間違えたのか、分かりません。 また、解説の球Lの半径が√3a/2となるのも分からないのです。 この二等辺三角形から、1:1:√2が成り立ち、立方体の1辺をaとするなら、 球Lの半径は√2a/2になると思います。 お手数ですが、ご意見。・ご回答お願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など