対角線論法 10進数展開
対角線論法を用いて、自然数全体の集合と[0,1]区間の間には全単射な写像は定められないということを示す証明を読んでいて疑問に思ったのですが、
循環しない少数は10進数展開が一意には定まらない(例えば、2/5=0.400…=0.399…)のに、なぜ「実数a,bに対して、a,bの少数第n位が異なればa,bが異なる」というようなことができるのでしょうか?
あと、循環しない少数ではない実数(1/3とか√2とかπとか)の10進数展開は一意に定まると思うのですが、その証明が考えてもわかりません。知っている方がいたら教えてもらえないでしょうか?
最後に、10進展開についても疑問があるのですが、
「実数aが10進展開できる」とはどういうことなのでしょうか?
これは、An=k(n)/(10^n) (ただし0≦k(n)≦9)という数列の級数がaと一致する。すなわち、級数の部分和がaに収束する ということなのでしょうか?
それとも、
{ΣAn}⊂Map({整数},{有理数})という集合(今度はAnのnは整数にすることにします。雰囲気的にはΣはローラン展開のΣに近いと思います。あと、-9≦k(n)≦9ということにします。)に自然に和を定義し、積を(小学校のときの筆算を自然に拡張する意味で)自然に定義します。そのとき{ΣAn}が体をなすことを示し、{実数全体}と{ΣAn}が同型であるとき、実数aに対応する{ΣAn}の元をaの10進展開と呼ぶのでしょうか?
以上です。よろしくお願いします。
お礼
ありがとうございました。解決しました。