ベストアンサー 点と直線の距離の公式について 2021/02/01 18:55 x^2+y^2=1で、これに接する直線がy=x+bであるとき、bの値はいくつですか。 判別式はd=b^2-4ac使えますか。 また円の半径が不明な場合も教えてください。 みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー gamma1854 ベストアンサー率52% (320/607) 2021/02/01 19:12 回答No.1 この円の中心と、直線との距離dは、 d = |0 - 0 + b| /√{1^2+(-1)^2}. ですから、接する場合はd=1ということゆえ、 |0 - 0 + b|/√{1^2+(-1)^2} = 1. となりこれより、b = ±√2. となります。 ---------------- また、直線の方程式を円の方程式に代入すると、 x^2 + (x+b)^2 = 1. となり、整理して(判別式) = 0 とおくと接するときのbの値を算出できます。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 円と直線の共有点の個数 次の円と直線の共有点の個数を調べなさい。 x^2+y^2=6,y=-x+3 という問題があるのですが以下の解き方・答えで合っているでしょうか? (1) 連立方程式にして代入法を使い解く。 (2) 判別式D=b^2-4acにそれぞれ値を代入。 値が「12」とでたので、0より大きいから共有点の個数は2個というのが答えとして導かれました。 分かる方いらっしゃいましたら御願いします。 点と直線の距離の公式 円x^2+y^2+1=0のy≧0の部分と次の直線との共有点の個数は、aの値の変化によってどのように変わるか (1)y=2x+a (2)y=ax+2 このy≧0の部分と交わるっていう条件があるせいで解けません 場合わけして考えることが必要なんでしょうか? もし必要ならどのときとどのときで場合わけをするべきなのか教えてください よろしくおねがいいたします 点と直線の距離d お世話になっております。 数学IIの図形と方程式から、実際には円と直線の共有点の個数を定める基本的な問題についてですが、これまた基本的な点と直線の距離dを導く過程でてこずってしまい、恥ずかしながら質問致します。 問題「円x^2+y^2=1とy=x+kが異なる二点で交わるときの、定数kの値の範囲を定めろ」というのを、原点から直線までの距離dと円の半径rとの関係から導く方法でもとめようと思います。 公式を使えば、d=|k|/√(2)と出来ますが、公式の定着が良く無く、一から式を立てようとやってみましたら…… y=x+k…(1) として、まず原点Oから直線(1)に垂線を下ろし、その足をH(x0,y0)とする。二直線については、(1)⊥直線OH であるから、OHの方程式の傾きmは、m・1=-1より、m=-1。また、OHは原点Oを通るから結局OHの方程式は y=-x…(2)になる。 さらに垂線の足Hは、二直線(1)(2)の交点であるから、(1)と(2)の連立方程式の解としてHの座標が得られる。これを解くとx0=-(k/2)、y0=k/2。 これらから、dは線分OHの長さとして、d={√(2k^2)}/2。一方円の半径rは1だから、 {√(2k^2)}/2<1。有理化して整理すれば、|k|<√(2)より場合分けして、-√(2)<k<√(2) となる。 一から式を立てると面倒ですが、公式の丸暗記が当てにならない当方としては、時々こうやって一から考え直すと頭がスッキリするのですが、公式を使う場合より、計算が煩雑で解き方より計算に脳みそが偏ってしまいます。なので、ここまでの解の筋道についておかしな点がありましたら、御指摘下さると嬉しいです。宜しくお願い致します。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 円と直線の接点の求め方について 円と直線の接点の求め方がわかりません。 x^2+y^2=r^2と接点を持つ、直線y=x+b。 ここから、切片はわからないですか。 判別式d=b^2-4acは使えないでしょうか。 これは理系の大学へ行く上で必須です。 点と直線の距離の公式の証明について 点と直線の距離の公式の証明について 点と直線の距離の公式の証明において、 aX+bY+c=0 より a(x-x0)+b(y-y0)=-(ax0+by0+c) という式が出てきました。何を意味しているのかわかりません。 左辺は、点(x0,y0)を通る、与えられた直線と平行な直線の式を意味していますが、 右辺は、与えられた直線の式に点(x0,y0)を代入し、しかもマイナスがかかっているという 形になっています。そもそも、x0,y0は与えられた直線の式を通らないのに何故、代入なのか? もしや、点と直線の距離の関数(垂直な直線)を意味しているのか? 何が言いたいのかよくわかりません。 青チャートの、 a(x+x1)+b(y+y1)+c=0 ax+by+ax1+by1+c=0 の一般系と原点の場合との比較の説明の方はわかります。 それとは無関係でしょうか? 上記の出典は、フォーカスゴールド数II、Bです。 点と直線の距離 次の点と直線の距離を求めよ (1)点(-3,5)と直線x=1 (2)点(1,2)と直線y=2x-5 なのですが、点と直線の距離の公式 点p(x1,y1)と直線ax+by+c=0の距離dは d=|ax1+by1+c|. ÷√a^2+b2 なのは分かっているのですが どのように問いていいのか分かりません(。-_-。) 解説をよろしくお願いします>< 点と直線の距離の最大値 直線l:(2t+1)x-(3t+1)y-3t-2=0と点A(2、0)がある 直線lと点Aとの距離が最大になるようなtの値と、そのときの距離を求めよ。 この問題がどうしても解けません 途中まで解けたのですが・・・ ヒントをよろしくおねがいします 直線lの方程式をtについて整理して (2x-3y-3)t+(x-y-2)=0 tについての恒等式として、 2x-3y-3=0、x-y-2=0よりx=3、y=1 ∴直線lは(3、1)を通る 直線lと点Aの距離をdとすると、dが最大になるとき、 d=2点(2,0)(3,1)の距離なのかな?って直感的に思ったんですがそれを証明する方法がわからないのでこれは間違っているのでしょうが? 点と直線の距離 点と直線の距離の公式の証明で、 点P(x1,y1)と直線lの距離をdを求める。 点Pと直線lをx軸方向に-x1、y軸方向に-y1だけ平行移動すると、Pは原点Oに、直線lはそれと平行な直線l'に移り、dは原点Oと直線l'の距離に等しい。 l'の方程式は、数Iで学んだことから、 a{x-(-x1)}+b{y-(-y1)}+c=0 すなわち ax+by+(ax1+by1+c)=0 dは、原点Oと直線l'の距離に等しいから、点と直線の距離の公式がなりたつ。 と書いてありました、 いってることは、わかるんですが、 >dは、原点Oと直線l'の距離に等しいから ここからどう、求めるのかがわかりません。 教えてください。よろしくお願いします。 (1)半径rの円x^2+y^2=r^2と直線3x+y+10=0が共有点 (1)半径rの円x^2+y^2=r^2と直線3x+y+10=0が共有点をもつとき、rの値の範囲を求めなさい。 (2)円x^2+y^2=18と直線y=x+mが共有点をもつとき、定数mの値の範囲を求めなさい。 (3)半径rの円x^2+y^2=r^2と直線4x-y+17=0が異なる2点で交わるとき、rの値の範囲を求めなさい。 (4)円x^2+y^2=5と直線y=3x+mが接するとき、定数mの値の範囲を求めなさい。 (5)半径rの円x^2+y^2=r^2と直線x-3y-10=0が共有点を持たないとき、rの値の範囲を求めなさい。 解き方含め教えてください!! お願いします。 円と直線の交点間の距離 円x^2+y^2=10と直線y=ax-5(aー1)について次の各問いに答えよ (1)これらが2点P、Qで交わるような定数aの値の範囲を求めよ (2)PQ=2√5となるようなaの値を求めよ (1)はなんとか分かりました。円の方程式に直線の方程式を代入して整理したあと判別式D>0となるように延々と計算してやっと解けました (2)なんですがまず交点P、Qの座標を求めようとしても途中で計算が複雑になりすぎて最後まで計算できません。無理やりにでも座標を求めるべきなんでしょうか? 放物線と直線の共有点 (1)y=5-9x^2,-2/3≦x≦1と直線y=m(x+1)とが共有点を持つのは□≦m≦□の時である。 ふたつの式を連立して判別式をD=0を利用して、(m-30)(m-6)=0 すると接点のx座標は-m/18となっているんですが、どうやってx座標がこうなったのかわかりません。 解説お願いします。 (2)2つの放物線C1:y=(x+2)^2,C2:y=6-(x-2)^2と、直線l:y=ax+bがある。 aの値を決めたとき「lがC1,C2のどちらとも共有点を持たない」ようなbが存在するのは□<a<□の時である。 この問題ではlに対して、C1,C2と連立させて各々判別式D<0を解いて、それを同時に満たすaを求めればいいと思うのですが、この問題文の最後の 「lがC1,C2のどちらとも共有点を持たない」ようなbが存在するのは、 の「ようなbが存在する」とはどういうことですか? 「lがC1,C2のどちらとも共有点を持たない」ような時のaの範囲ならわかるんですが、最後の言っていることがわかりません。 詳しく解説お願いします。 3次元での直線と点の距離 点A(x1,y1,z1)と点B(x2,y2,z2)を通る直線Cと 点D(x3,y3,z3)の距離を求めたいんですが、 公式などありますでしょうか? 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 点と直線 2 1,2直線x-4y+5=0,2x+y+1=0の交点を通る直線のうち、次のような直線の方程式を 求めよ。 (1)直線3x-2y+5=0に垂直 2,2直線(a+2)x+(a+3)y=10,6x+(2a-1)y=5について、次のような条件をみたす aの値を求めよ。 (1)2直線は垂直である 3,次の3点が同一直線上にあるように、定数aの値を定めよ。 (1) (1,0),(a,-1),(-1,1) 4,次の直線に関して、点A(2,1)と対称な点の座標を求めよ。 (1)y=2x 5,次の点と直線の距離を求めよ。 (1) (0,0),3x-4y=10 途中式もよろしくお願いします。 直線の方程式を求める 次の問題でちょっとすっきりしないところがあります。 問題 y=2x^2-1─(1)とx=2y^2-1─(2) の交点を第1象限かそれぞれA,B,C,D とする。このとき直線BDの直線の方程式を求めよ。 解答 (1)-(2)より y-x=2(x^2-y^2) 2(x+y)(x-y)+(x-y)=0 (x-y)(x+y+1/2)=0─(3) 点B,Dはy=x上にはないので求める方程式は x+y+1/2=0である。 最後の(3)が直線ACと直線BDを表しているのは図を書けば分かるんですが、何故(1)と(2)の差をとると直線ACと直線BDの式がでてきたんでしょうか?こういう結果が出るのは差をとる前から予想できたんでしょうか?また、直線ABと直線CD、直線ADと直線BCの様に他の式が出る可能性はなかったんでしょうか?(日本語が変ですいません^^;) よろしくお願いしますm(_ _)m 2点間の距離の公式と点と直線の公式の関係 xy平面上に放物線y=x^2と点P(0,b)を考える。ただしb>0とする。点X(t,t^2)がこの放物線上を動くとき線分BXの長さの最小値を求めよ。」という問題なのですが、解答では、2点間の距離の公式から立式して解いているのですが、私は、点X(t,t^2)における接線を求めて、その直線と点において、点と直線の公式を使って求めようとしましたが、どこが行けないのでしょうか、確かに回りくどいですが、まちがってはいませんよね。点と直線の公式では、 BX^2={(t^2 + b)^2} / 4t^2 + 1 になってしまって、2点間の距離の公式の結果と違ってしまいました。よろしくお願いします。 点と直線の距離 点(x1,y1)と直線ax+by+c=0の距離dの公式は、 d=|ax1+by1+c|/(√a^2+b^2) となることは理解できますが、ある問題集の解答に、 「点(x1,y1)が直線ax+by+c=0より上にある場合の距離は、 d=ax1+by1+c/(√a^2+b^2) と表せる」 との説明がありました。(分子の絶対値が取れている) なぜそうなるのかよくわかりません。 どなたか解説していただけませんでしょうか。 数学2の円と直線の問題が分かりません。 教科書などにも乗ってないので途中式と答えを教えて下さい! 円x^2+y^2=4と直線y=kx+4の共有点が1個となるようなkの値を求めなさい。 円の方程式を(1)、直線の方程式を(2)として、(2)を(1)に代入して x^2+(kx+4)^2=4 これを整理して (k^2+1)x^2+8kx+12=0 これを判別式D=0になるようなkの値を求める…で合ってますか? 合ってても合ってなくてもここから先が分からないので途中式も含めて教えて下さい(>_<)! 双曲線と直線。計算が合わないんです 双曲線 4x^-9y^=36 と 直線 2x-3y=h が共有点を持たないhの値はなんでしょうか?? 直線を x=(h+3y)/2 にして 双曲線に代入して判別式をもとめて<0になればよいのですが・・。 判別式D/4=9h^+36<0 となりますよねぇ・・ じゃぁhがでてこないんですが・・。 計算間違えてるんでしょうか? 答えはh=0です お願いします。 点と直線 大急ぎです。 3直線7x+y-5=0…(1) x+4y+7=0…(2) 2x-y+5=0…(3) に対して(1)と(2)の交点をA,(2)と(3)の交点をB,(3)と(1)の交点をCとる。 次の問に答えよ。 1問目)Aを通り、△ABCの面積を2等分する直線の方程式を求めよ。 1問目は解けました。 A(1,ー2)B(3,1)C(0,5) 答えは5y+8x+2=0 2問目)直線(3)上の点D(一2分の5,0)を通り、△ABCの面積を2等分する直線の方程式を求めよ。 3問目)Aを通り,BとCから等しい距離にある直線の方程式を求めよ。 2問目と3問目を教えて下さい。 明日までなんです。 お願い致します!! 違いを教えて下さい。<点と直線の距離公式> 座標平面軸上に点A(4,0)と方程式y=2xで表される直線lをとる。 点Pのの座標を(a,b)とし、Pからlに引いた垂線とlの交点をQとおくと、 Qのy座標は2a+4b/5である。 点Pが条件『Pから直線lまでの距離とPAの比が1:√5である』を満たしながら 動くとき、Pの方程式をもとめよ。 という問題で、 (Pとlの距離)=|2a-b|/√{2^2+(-1^2)}=|2a-b|/√5 PA=√{(a-4)^2+b^2} |2a-b|/√5:√{(a-4)^2+b^2}=1:√5 |2a-b|=√{(a-4)^2+b^2} この両辺を平方・整理して、 4ab=3a^2+8a-16 ここの部分なのですが、絶対値をはずすのに平方しなくてはならないのですか? 例えば、 点A(5,4)とx+3y+3=0の距離 距離=|1×5+3×4+3|/√(1^2+3^2)=2√10 と求めますよね。 でもこれは絶対値をはずすのに平方してませんよね? 点と直線の距離公式の絶対値部分をを平方してはずすときと、 そうでないときの違いは何なのでしょうか? 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など