ベストアンサー 全微分方程式の本 2018/12/13 01:51 数学で、多変数関数の微分で、偏微分のあと全微分をします。 「偏微分方程式」の本はよくみますが、「全微分方程式」の本はあまり、というか見た記憶がありません。何故でしょうか? みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー ddtddtddt ベストアンサー率56% (180/320) 2018/12/13 18:42 回答No.1 全微分について難しく考え過ぎだと思います。 確かに全微分型の微分方程式というのはあるのですが、全微分とは多変数関数に対する普通の微分の事です。そういう意味では、偏微分の方が多変数関数ならではのものです。 なので全微分は当たり前の事なので、本にするほどの事は余りない訳です。むしろ多変数関数ならではの偏微分の方が、偏微分「関係」に存在する一定の癖(偏り)に注目する方が、理論的にも面白いし実用的にも重要だ、という事になります。 広告を見て全文表示する ログインすると、全ての回答が全文表示されます。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A 偏微分方程式の参考書 今、偏微分方程式の勉強をしているのですが、 偏微分方程式の分かりやすい参考書ってありますか? ちなみに、今、「フーリエ解析と偏微分方程式 (技術者のための高等数学)」この本で勉強してます。 偏微分方程式のお勧めの教科書はありませんか? 偏微分方程式のお勧めの教科書はありませんか? 偏微分方程式の系統立てた勉強をしたことがなかったので,勉強しなおそうと思っているのですが,何かお勧めの教科書は無いでしょうか? いまのところ,自分では ・俣野 博, 神保 道夫 『熱・波動と微分方程式』岩波書店 ・金子 晃 『偏微分方程式入門』東京大学出版会 あたりを考えているのですが,この二つについての評価や,この二つ以外の勧めがあれば教えて欲しいです. なお,自分は工学系で,関数解析とかは未習です(関数解析の本は買いましたが,まだ読んでないです…).偏微分方程式については,電磁気学,量子力学,振動工学の授業で出てきたときに出てきた方程式の解き方を習ったのと,フーリエ解析の授業でちょっとかじってます. 数学 偏微分 方程式 について 数学の偏微分方程式について教えて下さい。 1階線形偏微分方程式の問題で疑問に思ったので質問させて頂きます。 問題 ∂u/∂x+∂u/∂x=0 解答は、 u=f(x-y)「fは任意関数」でした。 任意関数fとはどんな関数でもいいのですか? 三角関数や指数関数はOKだと思いますが、 u=|(x-y)|やu=2(x-y) さらに、u=x^2(x-y)など微分出来ればどんな関数でも OKなんですか? 以上、ご回答よろしくお願い致します。 天文学のお話。日本ではどのように考えられていた? OKWAVE コラム 偏微分方程式について 偏微分方程式の問題では、よく波動方程式や熱伝導方程式などの物理的意味のある問題が登場しますが、それ以外の偏微分方程式(連立偏微分方程式や3次の偏微分方程式など)はあまり重要ではないのでしょうか。 偏微分方程式 f(t)は2回微分可能な関数であり、z(x,y)=f(3x-4y)が偏微分方程式zxx+zyy+z=0となるようなf(t)を求めよ。 というような問題で、zxxはzをxで2回偏微分したものを表しています。 手持ちの参考書には偏微分方程式についての記述がなく、どのように考えればよいのかわかりません。 ご回答よろしくお願いします。 偏微分方程式の問題 偏微分方程式の問題 φ(x,y)に関する偏微分方程式∂^2φ/∂x^2=-∂φ/∂yについてφ(x,y)=X(x)Y(y)と解を変数分離して解け。ただしY'(x)/Y(y)>0とする。 この問題教えて下さい。お願いします 二階偏微分方程式 今、偏微分方程式の勉強をしているのですが、なかなか頭に入りません。二階偏微分方程式(たとえば拡散方程式や波動方程式)の解法として、変数分離法やフーリエ級数展開などがありますが、ほかにどのようなものがあるでしょうか。またどのような場合にどの解法を採用すべきかということに関する助言もお願いします。どうかよろしくお願いします。 ニ変数関数z(x,y)の偏微分方程式 ニ変数関数z(x,y)に関して、 偏微分方程式 2(∂/∂x)^2 z - 3(∂/∂y)(∂/∂y) z - 2 (∂/∂y)^2 z = 0 を解くという問題なのですが、よろしければ教えていただけないでしょうか。 微分方程式ではなく"(偏)微分不等式"という学問はないのでしょうか? 微分方程式ではなく"(偏)微分不等式"という学問はないのでしょうか? 数学でも分野が幅広くあるわけだ。自分では 例として p,qはxについてI上連続関数としf''(x)+g(x)f'(x)+p(x)f(x)≦0を満たすようなf(x)を求める 学問もあればそちらを専門的にやりたいと思うし、今でもちょっとたまに考えたりしています。 偏微分方程式 (∂^2 u)/(∂x∂y)=0 ※先週、質問させていただいた 「偏微分方程式 (∂^2 u)/(∂x^2)=0」 http://okwave.jp/qa/q8102140.html に関連した質問です。 u を x と y の関数として、次の偏微分方程式の解 u(x,y) の形を求めよ。 (∂^2 u)/(∂x∂y)=0 模範解答 (∂/∂x)(∂u/∂y)=0 であるから、 ∂u/∂y = φ(y) (φ(y)はyの任意の関数) である。したがって、 u = ∫φ(y)dy + θ(x) = φ_1(y) + θ(x) (θ(x), φ_1(y)はそれぞれxおよびyの任意の関数) となる。 ・・・と本に書いてあります。 最初の(∂/∂x)(∂u/∂y)=0は自分でも出来ました。 でも、なぜ ∂u/∂y = 「φ(y)」になるのか分かりません。 てっきり、∂u/∂y = 「φ(x)」になるのかな、と思っていました。 というのも、前回の質問にも載せた、本からの抜粋によると: 例) 次の偏微分方程式を満たすu(x,y)の形を求めよう。 (1) ∂u/∂x = 0 xに対する偏微分が0であるから、uはxを含まない関数、すなわちuはyだけの関数である。φ(y)をyの任意の関数として u = φ(y) である。 yの任意の関数φ(y)をxで偏微分しても結果は0であるため、φ(y)は1階の常微分方程式の解に含まれる任意定数に対応している。 ・・・でしたから、今回の場合、 「yに対する偏微分が0であるから、uは『y』を含まない関数、すなわちuは『x』だけの関数である。φ(x)をxの任意の関数として u = φ(x) である。」になると思っていました。なぜ、こうならないのですか? (そして、後半では突然θ(x)が出てきて、こっちはxの任意の関数のようですね・・・。) 混乱しています。分かる方、どうか説明して下さい。お願いします。 微分方程式について 微分方程式について。 yやdy/dxの形ならば解けるのですが ちょっと変わった形になると解けずに困っております。 回答お願いします。 1 未知関数x(t),y(t)に関する微分方程式 x´(t)=y(t), y´(t)=-x(t)を 初期条件x(0)=a, y(0)=bの下で解け。 2 x=x(t)を変数tのC^∞級関数とする。 このとき、 d^2x/dt^2 +(dx/dt)^2 -4=0 を解け。 3 tの関数x(t)が次の微分方程式を満たすとする x´+x^2+a(t)x+b(t)=0 ただしx´=dx/dtである。 ・x(t)=u´(t)/u(t)のとき、関数u(t)の満たす微分方程式を求めよ。 ・微分方程式 x´=x(1-x)の一般解を求めよ。 長いですが回答お願いします 偏微分(初学者) 方程式F(x,y)=0によってxの陰関数y=f(x)が定められているとき、(写真の式)が書かれています。(読みずらいので、紙に書きました) 写真の式はどのようにかんがえているのでしょうか? そもそもF(x,y)という2変数関数では普通にxで微分する(偏微分しかできない)ということは出来ないようにおもうのですが、どうなっているのでしょうか? 日本史の転換点?:赤穂浪士、池田屋事件、禁門の変に見る武士の忠義と正義 OKWAVE コラム 偏微分方程式の一般解などについて 偏微分方程式の一般解などについて 二点質問があります。 1. 「n階偏微分方程式の一般解はn個の任意関数を含む」とテキストにあったのですが、なぜそう言えるのでしょうか? n階常微分方程式の場合は、n回積分してやればn個の任意定数が出てくる、というように理解できるのですが、偏微分方程式の場合はどう考えたらよいのかよく分かりません。とくに、なぜ任意「定数」ではなく、任意「関数」なのでしょうか? 2. 1に関連しますが、偏微分方程式の一般解であるための必要十分条件みたいなものはあるのでしょうか?たとえば、n階常微分方程式ならn個の線形独立な基本解の線形結合が一般解となると思うのですが、偏微分方程式の場合はどうなんでしょうか? どうぞよろしくお願い致します。 微分方程式 もうすぐ数学のテストなのですが、交通の事情などで今まで授業にあまり出ることが出来なかったため微分方程式の解き方がよく分かりません。 微分方程式を初期条件のもとで求めるといったような問題で、簡単なものだとは思うのですが教科書にもあまり詳しく書かれていないため困っています。 微分方程式の解き方を教えていただけないでしょうか? もしくはそういったサイトなど無いでしょうか? よろしくお願いします。 微分方程式 大学で学んだ後 趣味で大学の数学の勉強をしています。 ルベーグ積分はなんとなくですが読んでいます。 微分方程式については、常微分方程式と偏微分方程式がありますが、常微分法定期の入門書ののち、偏微分方程式の入門所を読んだ後、どういう本を読むのがいいんでしょうか? 常微分方程式、偏微分方程式ともに「入門」と銘打たれた書物は沢山ありますが、その後何をしたらいいのか・・・・・。 教えてください。 微分方程式の解き方 (置換の仕方) 以下の2問の微分方程式の解き方をどなたか教えてください。 (1) sin(x) * cos(y)^2 + y' * cos(x)^2 = C (x:変数, y:xの関数, y':yの導関数, C:定数) (2) y' = (a * x + b * y + c) ^(1/2) (x:変数, y:xの関数, y':yの導関数, a,b,c:定数) 2問ともに適当な変数に置換することは予想がつくのですが,どう置き換えればいいかわかりません。 それと(1)は非同次形の線形微分方程式なんでしょうか? よろしくお願いします。 微分方程式の問題を教えて下さい!! 大学の数学の問題がわかりません。微分方程式の問題なのですが解けません(´;ω;`) 解ける方居ましたら至急教えて下さい。よろしくお願いします。 問題文が、「未知関数x1(t), x2(t)に関する次の連立線形微分方程式の基本行列を一つ求めよ」というものです。 問題文は画像として添付しました。解き方をお教え下さいm(_ _)m 偏微分方程式の解き方(補助微分方程式利用) P(x, y)∂z/∂x+Q(x, y)∂z/∂y=0を解く際に、 補助微分方程式として、 dx/P(x, y)=dy/Q(x, y)・・・(*) を考えますが、(*)の形を思いつく過程を教えて頂けると嬉しいです。 また、1階の斉次線形偏微分方程式は、すべて(*)の形の補助微分方程式利用で解けるのでしょうか? よろしくお願いします。 微分方程式の解き方 この微分方程式の解き方を教えてください d^2u/dφ^2 + u = 1/l 楕円の問題で出てきた微分方程式で、uをφの関数として一般解を求めよ、という問題です。 三角関数でおいて解いてみたのですが、そのあとの問題との兼ね合いが悪く、間違っている気がしてなりません。 かなり初歩的な質問かもしれませんがよろしくお願いします。 完全微分方程式は、平ら? 完全微分方程式についてなのですが、zの全微分dzが0。このとき関数z = f(x,y)はもとから変化のない定数関数といえるので dz=0 ならば z = C(Cは任意定数) …と本には解説が書いてあるのですが、f(x,y)=zが定数ということは、xy平面に平行な平面ということでしょうか? よろしくお願いします。 注目のQ&A 「You」や「I」が入った曲といえば? Part2 結婚について考えていない大学生の彼氏について 関東の方に聞きたいです 大阪万博について 駅の清涼飲料水自販機 不倫の慰謝料の請求について 新型コロナウイルスがもたらした功績について教えて 旧姓を使う理由。 回復メディアの保存方法 好きな人を諦める方法 小諸市(長野県)在住でスキーやスノボをする方の用具 カテゴリ 学問・教育 人文・社会科学 語学 自然科学 数学・算数 応用科学(農工医) 学校 受験・進学 留学 その他(学問・教育) カテゴリ一覧を見る OKWAVE コラム 突然のトラブル?プリンター・メール・LINE編 携帯料金を賢く見直す!格安SIMと端末選びのポイントは? 友達って必要?友情って何だろう 大震災時の現実とは?私たちができる備え 「結婚相談所は恥ずかしい」は時代遅れ!負け組の誤解と出会いの掴み方 あなたにピッタリな商品が見つかる! OKWAVE セレクト コスメ化粧品 化粧水・クレンジングなど 健康食品・サプリ コンブチャなど バス用品 入浴剤・アミノ酸シャンプーなど スマホアプリ マッチングアプリなど ヘアケア 白髪染めヘアカラーなど インターネット回線 プロバイダ、光回線など